3-manifolds, q-series, and topological strings

Sunghyuk Park

Caltech

Moscow-Beijing topology seminar June 24, 2020

This talk

This is a gentle introduction to \hat{Z} , a (conjectural) 3-manifold invariant valued in q-series with integer coefficients

$$Y^3 \longrightarrow \hat{Z}(Y;q),$$
 $S^3 \setminus K \longrightarrow \hat{Z}(S^3 \setminus K;q) =: F_K(x,q),$

whose existence was conjectured recently by Gukov-Putrov-Vafa (2016), Gukov-Pei-Putrov-Vafa (2017), and Gukov-Manolescu (2019).

I will review what is known about this interesting invariant, and then discuss some recent developments.

This talk is partly based on arXiv:1909.13002, arXiv:2004.02087, and arXiv:2005.13349 (the last one is joint with T. Ekholm, A. Gruen, S. Gukov, P. Kucharski and P. Sułkowski).

Outline

- 0. Basic quantum topology (Chern-Simons theory)
- 1. \hat{Z} and F_K
- 2. Large N

TQFT

A topological quantum field theory (TQFT) is a monoidal functor from the category of manifolds and their cobordisms to a monoidal category (typically the category of vector spaces).

When evaluated on a closed manifold, it evaluates to a number, and is called the partition function of the theory on the manifold.

Chern-Simons theory

Chern-Simons theory is a 3d TQFT determined by a choice of gauge group G (compact, connected, simply connected Lie group) and an integer $k \in \mathbb{Z}_{>0}$ "level". For G = SU(2),

$$S(A) = rac{k}{8\pi^2} \int_Y \operatorname{Tr} \left(A \wedge dA + rac{2}{3} A \wedge A \wedge A
ight),$$
 $Z_{CS}(Y; G, k)$ " = " $\int_{\mathcal{A}/\mathcal{G}} \mathrm{e}^{2\pi i S(A)} \, dA.$

Following the physical formulation by Witten (1989), mathematical definition was given by Reshetikhin-Turaev (1991), using quantum groups. This Chern-Simons partition function is called the Witten-Reshetikhin-Turaev (WRT) invariant.

Line operators in Chern-Simons theory

In Chern-Simons theory, we can put "Wilson line operators" which are 1-dimensional submanifolds labelled by a representation R of G.

When $Y = S^3$, these line operators are knots (and links) "colored by" representations, and the partition function Z_{CS} gives a knot invariant (often called quantum knot invariant).

Quantum link invariants

Quantum link invariants that will be relevant to this talk:

- colored Jones polynomials J_n : G = SU(2), $R = V_n = \operatorname{Sym}^{n-1}\square$,
- colored HOMFLY-PT polynomials H_n : G = SU(N), $R = \operatorname{Sym}^{n-1}\square$
- Alexander polynomial Δ : G = U(1|1), $R = \square$

They are polynomials in $q = e^{\frac{2\pi i}{k}}$.

For instance, with G = SU(2) and $R = V_2$, we get the Jones polynomial J_2 . There is a skein relation

$$q J_2(\nearrow) - q^{-1}J_2(\nearrow) = (q^{\frac{1}{2}} - q^{-\frac{1}{2}})J_2(\).$$

The existence of such a skein relation is due to the fact that

$$\dim \mathcal{H}_{\mathcal{S}^2_{\square\,\square\,\overline{\square}\,\overline{\square}}}=2.$$

Complex Chern-Simons theory

One can study Chern-Simons theory for complex gauge groups $G_{\mathbb{C}}$, such as $SU(2)_{\mathbb{C}}=SL(2,\mathbb{C})$. Due to non-compactness, complex Chern-Simons theory is qualitatively different from compact Chern-Simons theory. For instance,

- infinite dimensional Hilbert spaces
- generic level

 \hat{Z} that we will discuss in a moment can be thought of as a non-perturbative partition function of complex Chern-Simons theory or as analytic continuation of WRT invariants.

Analytic continuation of WRT invariants

Theorem (Lawrence-Zagier 1999)

Let $P = \Sigma(2,3,5) = S_{-1}^3(\mathbf{3}_1^I)$ be the Poincare homology sphere. For every root of unity ξ ,

$$\tau(P;\xi) = \lim_{q \to \xi} \frac{\hat{Z}(P;q)}{2(q^{\frac{1}{2}} - q^{-\frac{1}{2}})}$$

where

$$\begin{split} \hat{Z}(P;q) &= q^{-\frac{3}{2}} (2 - \sum_{n \ge 0} q^n (q^n)_n) \\ &= q^{-\frac{3}{2}} (1 - q - q^3 - q^7 + q^8 + q^{14} + \cdots) \end{split}$$

There are results by Hikami and others along this line.

 \hat{Z} can be seen as a natural extension of these results.

\hat{Z} : physical definition and categorification

Using "3d-3d correspondence", Gukov-Putrov-Vafa (2016) and Gukov-Pei-Putrov-Vafa (2017) gave a physical definition of \hat{Z} .

The physics definition of \hat{Z} is roughly given as follows:

space-time :
$$\mathbb{R} \times \mathbb{R}^4 \times T^*Y$$

U U

N M5-branes : $\mathbb{R} \times \mathbb{R}^2 \times Y$.

"Compactifying" the 6d theory on Y, we get a 3d " $\mathcal{N}=2$ " theory T[Y,SU(N)]. The Hilbert space is doubly graded (coming from two U(1) symmetries of \mathbb{R}^4), and \hat{Z} is the graded Euler characteristic of the Hilbert space.

"
$$\hat{Z}_b(Y;q) = \sum_{i,j} (-1)^i q^j \dim \mathcal{H}_{BPS}^{i,j}(Y;b)$$
"

b is a certain choice of vacua on the boundary.

Takeaways from the physical definition

For our purposes, the takeaways from the physical definition is that \hat{Z} should be categorifiable, and that we need to decompose WRT invariants into a number of blocks to analytically continue.

Likorish, Wallance, and Kirby

Gukov-Pei-Putrov-Vafa also gave a mathematical definition of \hat{Z} for negative definite plumbed 3-manifolds.

Let's first recall some classical results:

Theorem (Likorish, Wallace 1960s)

Any closed, orientable, connected 3-manifold can be obtained by performing Dehn surgery on a link in S^3 .

Theorem (Kirby 1970s)

Two 3-manifolds obtained by Dehn surgery on links L, L' respectively are homeomorphic iff L and L' are related by a sequence of Kirby moves.

$$\xrightarrow{\downarrow \dots \downarrow} \pm i \longleftrightarrow \boxed{\mp i}$$

Plumbed 3-manifolds

For any tree Γ whose vertices are labelled by integers (called the plumbing graph), we can associate a 3-manifold, called the plumbed 3-manifold Y_{Γ} .

Neumann moves are Kirby moves for plumbing graphs.

\hat{Z} for negative definite plumbed 3-manifolds

Definition (Gukov-Pei-Putrov-Vafa 2017)

Let G = SU(2). For a negative definite plumbed 3-manifold Y_{Γ} ,

$$\hat{Z}_b(Y_{\Gamma}) = \oint \prod_{v \in V} \frac{dx_v}{2\pi i x_v} \left(\prod_{v \in V} (x_v^{\frac{1}{2}} - x_v^{-\frac{1}{2}})^{2 - \deg v} \sum_{\ell \in 2M\mathbb{Z}^V + b} q^{-\frac{1}{4}(\ell, M^{-1}\ell)} x^{\frac{\ell}{2}} \right),$$

where M is the adjacency matrix (linking matrix).

Theorem (Gukov-Pei-Putrov-Vafa 2017, Gukov-Manolescu 2019)

Ž is invariant under Neumann moves, and therefore is an invariant of negative definite plumbed 3-manifolds.

\hat{Z} for negative definite plumbed 3-manifolds (cont.)

It's not complicated! What it really means is

- 1 Start from the integrand $\prod_{v \in V} (x_v^{\frac{1}{2}} x_v^{-\frac{1}{2}})^{2-\deg v}$
- 2 Expand it "symmetrically", e.g.

$$(x^{\frac{1}{2}} - x^{-\frac{1}{2}})^{-1} = \frac{1}{2} \left(\dots + x^{-\frac{3}{2}} + x^{-\frac{1}{2}} - x^{\frac{1}{2}} - x^{\frac{3}{2}} - \dots \right)$$

3 Apply "Laplace transform"

$$\prod_{v \in V} x_v^{\ell_v} \mapsto \begin{cases} q^{-\frac{(\ell, M^{-1}\ell)}{4}} & \text{if } \ell \in 2M\mathbb{Z}^V + b \\ 0 & \text{otherwise} \end{cases},$$

and up to normalization we get $\hat{Z}_b(Y;q)$.

\hat{Z} examples

For the Poincare homology sphere $P = \Sigma(2,3,5)$, get the same series studied by Lawrence-Zagier.

For a Brieskorn homology sphere $\Sigma(2,3,7)$,

$$\hat{Z}(\Sigma(2,3,7)) = \sum_{n>0} \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{\prod_{j=1}^n (1-q^{n+j})} = 1 - q - q^5 + q^{10} - q^{11} + q^{18} + q^{30} - \cdots$$

What if *M* is not negative definite?

Sometimes, we can make sense of \hat{Z} for plumbed 3-manifolds which are not negative definite. For instance, Cheng-Chun-Ferrari-Gukov-Harrison (2018) observed

$$\hat{Z}(-\Sigma(2,3,7)) = \sum_{n\geq 0} \frac{(-1)^n q^{-\frac{n(n+2)}{2}}}{\prod_{j=1}^n (1-q^{-n-j})} = \sum_{n\geq 0} \frac{q^{n^2}}{\prod_{j=1}^n (1-q^{n+j})}$$
$$= 1 + q + q^3 + q^4 + q^5 + 2q^7 + q^8 + 2q^9 + q^{10} + \cdots$$

This is the seventh order mock theta function $\mathcal{F}_0(q)$ studied by Ramanujan.

The same result was obtained by Gukov-Manolescu (2019) using surgery and by Cheng-Ferrari-Sgroi (2019) using indefinite theta function.

b is a $Spin^c$ -structure

Remark (Gukov-Manolescu 2019)

The additional label b takes values in $\operatorname{Spin}^c(Y_{\Gamma})/\operatorname{conj}$.

So, (conjecturally) \hat{Z} should be a TQFT for 3-manifolds decorated with Spin^c -structures.

Cutting into pieces

If \hat{Z} is really a TQFT, we should be able to compute it from a surgery description of a 3-manifold. Gukov-Manolescu studied exactly this problem: \hat{Z} for 3-manifolds with a torus boundary. The Hilbert space associated to a torus is infinite-dimensional, whose basis roughly correspond to $\mathbb{Z} \times \mathbb{Z}$.

\hat{Z} for knot complements: F_K

When our 3-manifold is $S^3 \setminus K$, we will write $\hat{Z}_b(S^3 \setminus K) =: F_K(x, q)$. The additional parameter x is a boundary condition, parametrizing the holonomy eigenvalue along the meridian.

Example: the trefoil knot

$$\partial_{-6} = \int_{-6}^{-2}$$

$$F_{\mathbf{3}_{1}^{r}}^{+}(x,q) = \sum_{m \geq 1} \left(\frac{12}{m}\right) q^{\frac{m^{2}+23}{24}} x^{\frac{m}{2}} = -q x^{\frac{1}{2}} + q^{2} x^{\frac{5}{2}} + q^{3} x^{\frac{7}{2}} - q^{6} x^{\frac{11}{2}} + \cdots$$

Sometimes we write $F_K(x,q)=\frac{1}{2}\big(F_K^+(x,q)-F_K^+(x^{-1},q)\big)$ to make the Weyl symmetry manifest.

Melvin-Morton-Rozansky expansion

Before stating the conjecture of Gukov-Manolescu, let's recall some well-known results in quantum topology.

Theorem (Bar-Natan-Garoufalidis, Rozansky 1990s)

The colored Jones polynomials have the following asymptotic expansion

$$J_n(K;q=e^{\hbar})=\sum_{j>0}rac{P_j(x)}{\Delta_K(x)^{2j+1}}rac{\hbar^j}{j!}$$

where
$$P_i(x) \in \mathbb{Z}[x, x^{-1}]$$
, $P_0 = 1$, and $x = q^n = e^{n\hbar}$.

This expansion is called Melvin-Morton-Rozansky expansion.

Quantum A-polynomial

Theorem (Garoufalidis-Le 2003)

Colored Jones polynomials are q-holonomic. That is, there is a q-difference operator

$$\hat{A}_{\mathcal{K}}(\hat{x},\hat{y},q) = \sum_{0 \leq j \leq d} a_j(\hat{x},q)\hat{y}^j, \quad \hat{y}\hat{x} = q\hat{x}\hat{y}$$

annihilating the colored Jones generating function

$$\sum_{n\geq 0} J_n(K;q) y^{-n},$$

where
$$\hat{y}y^{-n} = y^{-n+1}$$
 and $\hat{x}y^{-n} = q^ny^{-n}$.

Quantum A-polynomial (cont.)

Independently, the physical interpretation of the quantum *A*-polynomial was given by Gukov (2003).

$$\mathcal{M}_{flat}(\mathring{S}^{3} \setminus K) \subset \mathcal{M}_{flat}(\Upsilon^{2}) = \underbrace{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}_{\mathbb{Z}_{2}}$$

Gukov-Manolescu conjecture

Conjecture (Gukov-Manolescu 2019)

The Melvin-Morton-Rozansky expansion of colored Jones polynomials

$$(x^{\frac{1}{2}}-x^{-\frac{1}{2}})J_n(K;q=e^{\hbar}) \stackrel{x=q^n}{=} (x^{\frac{1}{2}}-x^{-\frac{1}{2}}) \sum_{j\geq 0} \frac{P_j(x)}{\Delta_K(x)^{2j+1}} \frac{\hbar^j}{j!}$$

can be Borel resummed into a two-variable series $F_K(x,q)$ with integer coefficients.

Moreover, it is annihilated by the quantum A-polynomial

$$\hat{A}_K(\hat{x},\hat{y},q)F_K(x,q)=0.$$

In particular, $\lim_{q\to 1} F_K(x,q) = \frac{x^{\frac{1}{2}}-x^{-\frac{1}{2}}}{\Delta_K(x)}$.

Surgery formula

Conjecture (Gukov-Manolescu 2019)

There is a surgery formula

$$\hat{Z}_b(S^3_{p/r}(K)) = \oint \frac{dx}{2\pi i x} \left((x^{\frac{1}{2r}} - x^{-\frac{1}{2r}}) F_K(x, q) \sum_{u \in \frac{p}{r} \mathbb{Z} + \frac{b}{r}} q^{-\frac{r}{p}u^2} x^u \right)$$

provided the right hand side converges.

F_K example

The figure-eight knot:

$$F_{\mathbf{4}_1}^+(x,q) = x^{\frac{1}{2}} + 2x^{\frac{3}{2}} + (q+3+q^{-1})x^{\frac{5}{2}} + (2q^2+2q+5+2q^{-1}+2q^{-2})x^{\frac{7}{2}} + \cdots$$

Doing -1-surgery on the figure-eight knot, we get

$$\hat{Z}(S_{-1}^3(\mathbf{4}_1)) = 1 + q + q^3 + q^4 + q^5 + 2q^7 + q^8 + 2q^9 + q^{10} + \cdots,$$

confirming the previous observation that $\hat{\mathcal{Z}}(-\Sigma(2,3,7))=\mathcal{F}_0(q)$, in a highly non-trivial way!

Open problem: What's a closed-form expression of $F_{\mathbf{4}_1}(x,q)$?

Knots as closure of braids

For the moment, the most promising approach toward a mathematical definition of F_K seems to be the use of R-matrix.

Recall some classical theorems

Theorem (Alexander 1920s)

Every knot is a closure of a braid.

Theorem (Markov 1930s)

Two knots obtained by closure of the braids β, β' respectively are equivalent iff β and β' are related by a sequence of Markov moves.

Quantum groups and R-matrix

 $U_q(\mathfrak{sl}_2)$ is the associative algebra over $\mathbb{C}(q^{\frac{1}{2}})$ with generators $e,f,q^{\frac{h}{2}}$ and relations

$$q^{\frac{h}{2}}eq^{-\frac{h}{2}}=qe, \quad q^{\frac{h}{2}}fq^{-\frac{h}{2}}=q^{-1}f, \quad [e,f]=rac{q^{\frac{h}{2}}-q^{-\frac{h}{2}}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}.$$

For any V_n , there is an R-matrix $R: V_n \otimes V_n \to V_n \otimes V_n$ that induces a representation of the braid group B_m on $V_n^{\otimes m}$.

The colored Jones polynomial J_n of a given braid closure is the quantum trace of the endomorphism of $V_n^{\otimes m}$ for the braid.

R-matrix at large n

Theorem (P. 2020)

For positive braid knots, the conjecture of Gukov-Manolescu on the existence of F_K is true, and it can be computed using the "large color R-matrix" (R-matrix for Verma modules V_{∞}).

$$= x^{-\frac{1}{2}} \begin{bmatrix} i \\ k \end{bmatrix} \prod_{1 \le l \le k} \left(1 - x^{-1} q^{j+l} \right) \cdot x^{-\frac{(i-k)+j}{2}} q^{(i-k)j + \frac{(i-k)k}{2} + \frac{(i-k)+j+1}{2}}$$

R-matrix at large n (cont.)

Main idea of the proof: the infinite sum converges when only positive crossings appear, and it is invariant under positive stabilization. Now the theorem follows from the following theorem:

Theorem (Etnyre-Van Horn-Morris 2011)

Given a positive braid knot, any two positive braid presentations are related by a sequence of transverse Markov moves.

There are a lot more examples

Also in [P. 2020]: experimentally compute F_K for a variety of knots, including positive double twist knots and the Whitehead link.

In the classical limit $q \to 1$, F_L converges to the inverse of the Alexander-Conway function $\nabla_L(x_1, \cdots, x_m)$.

There are a lot more examples (cont.)

The Whitehead link:

$$F^+_{Wh}(x,y,q)\cong \sum_{i,j\geq 0} f^{Wh}_{ij}(q) x^{i+\frac{1}{2}} y^{j+\frac{1}{2}} \quad ext{where} \ \ f^{Wh}_{ij}(q)=$$

1	1	1	• • •
1	$-q^{-1}+1+q$	$-q^{-2}-q^{-1}+1+q+q^2$	
1	$-q^{-2}-q^{-1}+1+q+q^2$	$-2q^{-2} - 2q^{-1} + q + 2q^2 + q^3 + q^4$	
:	:	i:	

We get various twist knots by performing $-\frac{1}{r}$ -surgery on a component.

An approach toward general knots

We can replace negative crossings by odd powers of positive crossings to get a collection of positive braid knots, and look at the stabilization of their F_K .

We need a surgery formula that works for all surgery coefficients. It will most likely involve the theory of indefinite theta functions.

F_K for SU(N)

Now we turn our attention to G = SU(N) (it was G = SU(2) so far).

Theorem (P. 2019)

The results of Gukov-Manolescu can be generalized to SU(N). In particular, there is an explicit expression for $\hat{Z}^{SU(N)}$ of negative definite plumbed 3-manifolds and $F_K^{SU(N)}(x_1,\cdots,x_{N-1},q)$ of torus knots.

The main technical point: use the Weyl denominator $\prod_{\alpha \in \Delta^+} (x^{\frac{\alpha}{2}} - x^{-\frac{\alpha}{2}})$ instead of $x^{\frac{1}{2}} - x^{-\frac{1}{2}}$.

The classical limit can be factorized

$$\lim_{q\to 1} F_K^G(x_1,\cdots,x_r,q) = \prod_{\alpha\in\Delta^+} \frac{x^{\frac{\alpha}{2}}-x^{-\frac{\alpha}{2}}}{\Delta_K(x^{\alpha})}.$$

Specialization to symmetric representations

Consider the specialization

$$F_K^{SU(N),sym}(x,q) := F_K^{SU(N)}(x_1,\cdots,x_{N-1},q) \Big|_{x_1=x,x_2=\cdots=x_{N-1}=q}.$$

It is experimentally checked for some torus knots that

$$\hat{A}_K(\hat{x},\hat{y},a=q^N,q)F_K^{SU(N),sym}(x,q)=0,$$

where $\hat{A}_{K}(\hat{x}, \hat{y}, a, q)$ is the *q*-difference equation annihilating the (symmetrically) colored HOMFLY-PT generating function.

A natural question: Is there an a-deformation of F_K ?

a-deformation of F_K

Answer: Yes! (Ekholm-Gruen-Gukov-Kucharski-P.-Sulkowski 2020)

Explicit expression for (2,2p+1)-torus knots, and experimental calculation for the figure-eight knot

Conjecture (Ekholm-Gruen-Gukov-Kucharski-P.-Sułkowski 2020)

There exists a three-variable function $F_K(x, a, q)$ that interpolates SU(N)- F_K 's in the sense that $F_K(x, q^N, q) = F_K^{SU(N), sym}(x, q)$. Moreover, the series $F_K(x, a, q)$ has the following properties :

- 1. $\hat{A}_{K}(\hat{x}, \hat{y}, a, q)F_{K}(x, a, q) = 0$
- 2. $F_K(x^{-1}, a, q) = F_K(a^{-1}q^2x, a, q)$

(Weyl symmetry)

- 3a. $F_K(x, q^N, q)\Big|_{q \to 1} = \Delta_K(x)^{1-N}$
- 3b. $F_K(x, q, q) = 1$
- 3c. $F_K(x, 1, q) = \Delta_K(q^{-1}x)$

Topological strings

Recall the well-known result by Ooguri-Vafa (2000): colored HOMFLY-PT generating function is the open string partition function of the following system.

space-time :
$$\mathbb{R} \times \mathbb{R}^4 \times T^*S^3$$

U U

N M5-branes : $\mathbb{R} \times \mathbb{R}^2 \times S^3$

r M5-branes : $\mathbb{R} \times \mathbb{R}^2 \times L_K$.

In the large N limit, the system becomes

space-time :
$$\mathbb{R} \times \mathbb{R}^4 \times X$$

J U

r M5-branes : $\mathbb{R} \times \mathbb{R}^2 \times L_K$,

where X is the resolved conifold, the total space of $\mathcal{O}(-1) \oplus \mathcal{O}(-1) \to \mathbb{CP}^1$.

a-deformed F_K and topological strings

In our situation, we choose a different Lagrangian filling, namely the knot complement Lagrangian M_K .

Novel feature: M_K cannot be shifted off of S^3 completely when K is not fibered, so in the large N limit, there can still be some finite number of cotangent fibers where Reeb chords can end.

Physically, $F_K(x, a, q)$ is the open string partition function of this system.

$$F_K(x, a, q = e^{g_s}) = e^{\frac{1}{g_s}} U_K(x, a) + U_K^0(x, a) + g_s U_K^1(x, a) + g_s^2 U_K^2(x, a) + \cdots$$

where U_K counts disks and U_K^k counts curves of Euler characteristic $\chi = -k$.

a-deformed F_K and topological strings (cont.)

One consequence of our conjecture:

$$\langle \hat{b} \rangle |_{(y,a)=(1,1)} = \lim_{q \to 1} \frac{F_K(x,qa,q)}{F_K(x,a,q)} \Big|_{(y,a)=(1,1)} = \Delta_K(x).$$

Moreover,

$$\begin{split} \langle \hat{b} \rangle |_{(y,a)=(1,1)} &= \exp\left(\frac{\partial U_K(x,a)}{\partial \log a} \Big|_{(y,a)=(1,1)}\right) \\ &= \exp\left(\int \frac{\partial \log y(x,a)}{\partial \log a} \Big|_{(y,a)=(1,1)} d\log x\right) \\ &= \exp\left(\int -\frac{\partial_{\log a} A_K}{\partial_{\log y} A_K} \Big|_{(y,a)=(1,1)} d\log x\right). \end{split}$$

a-deformed F_K and topological strings (cont.)

It is consistent with the following recent result!

Theorem (Diogo-Ekholm 2020)

$$\Delta_{K}(x) = (1 - x) \exp \left(\int -\frac{\partial_{\log a} \operatorname{Aug}_{K}}{\partial_{\log y} \operatorname{Aug}_{K}} \Big|_{(y,a)=(1,1)} d \log x \right)$$

Lessons

- \hat{Z} is an interesting object in quantum topology that is related to categorification, modularity, etc.
- It can be understood in the context of open topological strings, and it
 is an interesting problem to understand precisely how to count the
 holomorphic curves in this setting, when K is non-fibered.
- Many open questions:
 - ▶ Define \hat{Z} mathematically.
 - Categorify it!
 - ▶ Large N of \hat{Z} ? (related to large N transition for 3-manifolds)

Thank you for your attention!