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1. Lecture 1 (Tue Jan 23, 2024)

1.1. What is Quantum Topology? What is quantum topology? To put it in one sentence,
it can probably be described as a branch of low-dimensional topology informed by Chern-
Simons theory and its generalizations.
The advent of quantum topology can probably be traced back to the discovery of Jones

polynomial [Jon85], Witten’s interpretation of Jones polynomial in terms of Chern-Simons
theory [Wit89], discovery of quantum groups [Dri85, Jim85] and the mathematically precise
definition of Witten’s 3-manifold invariants by Reshetikhin and Turaev [RT91] using quantum
groups, axiomatization of TQFTs by Segal [Seg88] and Atiyah [Ati88], among many others.

1.1.1. Low-dimensional topology, algebra, and physics. One prominent feature of quantum
topology is the close interaction among low-dimensional topology, algebra, and physics.

Algebra

Low Dimensional Topology Quantum Physics

In quantum topology, we study invariants of knots, 3- and 4-manifolds that can be
constructed out of interesting algebras (e.g. quantum groups) or categories (e.g. modular
tensor categories). Those invariants, in turn, give us ways to think about the algebras and
categories geometrically.
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Those constructions are often motivated from physics, in which case there is a “quantum
parameter” q. In the “classical limit” q → 1, one recovers the corresponding “classical
invariant” based on symplectic geometry.

1.1.2. q-mathematics. Another distinguishing feature of quantum topology is the omnipresence
of q-analogs. The following quote is from Preface of the book “Lectures on Representa-
tion Theory and Knizhnik-Zamolodchikov Equations” by Etingof, Frenkel, and Kirillov, Jr.
[EFK98]:

“By that time, all three of us had already been severely afflicted with the
“q-disease”, a dangerous mathematical illness whose earliest victim was Euler,
but which was first diagnosed by Richard Askey. Mathematicians working in
practically every field, be it algebra, geometry, analysis, differential equations
– you name it – are vulnerable to its addictive charm. The first symptom of
the q-disease is that one day you realize that most of the results obtained or
acquired during your mathematical life admit a q-deformation. The second
stage is indicated by the idea that the q-case is much more interesting than
the classical one. ”

We – quantum topologists – fully embrace the q-disease. Indeed, we will encounter many
q-analogs throughout this course.

1.2. Historical overview.

1.2.1. Jones polynomial and skein relations. Jones polynomial was first discovered from the
study of von Neumann algebras [Jon85], but it was later reformulated by Kauffman in terms
of skein relations. We will use this skein-theoretic approach.

Definition 1. The Kauffman bracket ⟨L⟩ ∈ Z[A,A−1] of a framed link L is the Laurent
polynomial in A with integer coefficients that can be characterized by the following skein
relations (all drawn in blackboard framing):

= A + A−1 ,

= (−A2 − A−2) ,

⟨∅⟩ = 1.

Theorem 1. The Kauffman bracket polynomial is well-defined.

Before proving this theorem, let’s recall the following old theorem by Reidemeister (and
also independently by Alexander and Briggs):

Theorem 2 (Reidemeister moves). (1) Two link diagrams represent the same link iff
they are related by a sequence of Reidemeister moves (R1, R2, and R3).
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(2) Two link diagrams represent the same framed links in blackboard framing iff they are
related by a sequence of framed Reidemeister moves (R1’, R2, and R3).

R1 : ↔ ,

R1′ : ↔ ,

R2 : ↔ ,

R3 : ↔ .

Proposition 1. Under the R1 move (i.e. under the change of framing),

= (−A3)

Proof. Easy exercise. □

proof of Theorem 1. Because the framed first Reidemeister move (R1’) and the second and
the third Reidemeister moves (R2 and R3 moves) generate isotopies of framed links, it is
enough to show that the Kauffman bracket polynomial is preserved under the R1’, R2 and
R3 moves. Invariance under R1’ follows from Proposition 1.

It is preserved under the R2 move, because

= A2 + + + A−2

= .

Likewise, it is preserved under the R3 move, because
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= A3 + A + A + A

+ A−1 + A−1 + A−1 + A−3

= A3 + A + A + A−1 + A−1

= A3 + A + A + A

+ A−1 + A−1 + A−1 + A−3

= .

□

Definition 2. For a framed, oriented link L ⊂ S3, the writhe of L, denoted w(L), is the
self-linking number of L. It is equal to the signed number of crossings of its diagram in
blackboard framing.

Figure 1. Positive (left) and negative (right) crossings

Definition 3. The Jones polynomial JL(q) ∈ Z[q, q−1] of an oriented, unframed link L is the
Laurent polynomial in q with integer coefficients defined by

JL(q = −A2) := (−A3)−w(L)⟨L⟩,

where w(L) and ⟨L⟩ are computed in some diagram of L.

Theorem 3. The Jones polynomial is well-defined.

Proof. First of all, thanks to Proposition 1, it is clear that the Jones polynomial is invariant
under all three Reidemeister moves (including R1) and hence is independent of the choice of
link diagram.

Moreover, all the monomials of ⟨L⟩ have exponents whose parity is the same as the number
of crossings in the diagram. It follows that (−A3)w(L)⟨L⟩ has only even exponents, meaning
JL(q = −A2) is indeed a Laurent polynomial in q with integer coefficients. and this is true
because □
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Remark 1. The Jones polynomial can be equivalently defined in terms of the following skein
relation:

q2 − q−2 = (q − q−1) ,

= [2] ,

J∅(q) = 1 ,

where [2] denotes the quantum 2:

[2] :=
q2 − q−2

q − q−1
= q + q−1.

More generally, quantum n is defined as

[n] :=
qn − q−n

q − q−1
.

Notice that, in the classical limit q → 1, the Jones polynomial doesn’t see the crossings,
and

JL(q = 1) = 2s

for an s-component link. As we will see later, this reflects the fact that the Jones polynomial
is really an invariant of link “colored” by V2, the standard 2-dimensional representation of
SU(2).

Remark 2. The Jones polynomial can distinguish many knots, and it is an open question
whether the Jones polynomial detects the unknot. However, the Jones polynomial doesn’t
change under an operation called mutation, so, for instance, the Conway knot and the
Kinoshita-Terasaka knot, which are mutants, have the same Jones polynomial.

Figure 2. The Kinoshita-Terasaka knot (left) and the Conway knot (right).
[Figure taken from Wikipedia]

Exercise 1. For any framed, unoriented spatial web (i.e. generalization of links where we

allow trivalent vertices) K, define the SO(3)-polynomial J
SO(3)
K (q) ∈ Z[q, q−1] using the

https://en.wikipedia.org/wiki/Mutation_(knot_theory)
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following skein relations:

= q2 + q−2 −

 + [2]

 ,

+ [2] = + [2] ,

? = 0 ,

= [3] ,

J
SO(3)
∅ (q) = 1.

Show that

(1) J
SO(3)
K (q) is well-defined.

(2) The classical limit J ′
SO(3)
K (q = 1) of the rescaled polynomial J ′

SO(3)
K (q) := [2]

t
2J

SO(3)
K (q),

where t is the number of trivalent vertices of K, is equal to the number of Tait colorings
(i.e. 3-colorings of the edges of K in such a way that every trivalent vertex meets all
three colors) of K.

1.2.2. Witten’s interpretation of Jones polynomial in terms of Chern-Simons theory. In
[Wit89], Witten gave a physical interpretation of the Jones polynomial: the Jones polynomial
is the expectation value of the Wilson line defect in Chern-Simons theory.

Witten’s reformulation of Jones polynomial has at least 2 major advantages compared to
the original formulation:

• It is manifestly 3-dimensional (i.e. the definition doesn’t use any knot diagram at all),
and

• it can be naturally extended to links L in any other 3-manifold Y .

The invariant ZY,L of the pair (Y, L) was soon made mathematically rigorous by Reshetikhin
and Turaev [RT91] using quantum groups and is now commonly known as the Witten-
Reshetikhin-Tureav invariant.

Chern-Simons theory, which is a 3d TQFT, also makes it clear why there should be such
a skein relation. A 3d TQFT Z assigns a vector space Z(Σ) to a closed surface Σ and a
vector Z(Y ) ∈ Z(∂Y ) to a 3-manifold Y with boundary ∂Y . So, given a tangle T in a ball
B3, Chern-Simons theory assigns a vector Z(B3, T ) in the vector space Z(S2, ∂T ) assigned
to S2 with marked points.

From physics, Witten derived that (as long as the level k is big enough) the dimension of
the vector space Z(S2, {p1, p2, p3, p4}) assigned to the 2-sphere with 4 marked points is equal
to

dim Inv(V2 ⊗ V2 ⊗ V2 ⊗ V2) = 2,

where Inv denotes the SU(2)-invariant subspace.
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Any 2-dimensional vector space has a marvelous property that any 3 vectors in that vector
space satisfies a non-trivial linear relation. Therefore, we should have

α Z


 + β Z


 + γ Z


 = 0

for some α, β, γ ∈ C (not all of them zero) as vectors in

Z


 .

This is the origin of the 3-term skein relation.

2. Lecture 2 (Thu Jan 25, 2024)

2.1. Historical overview (cont.)

2.1.1. TQFTs. Soon after Witten’s work on TQFTs, Segal and Atiyah mathematically
formalized the notion of TQFTs. Mathematically, in the simplest form, an n-dimensional
TQFT Z is a symmetric monoidal functor from Bordn,n−1 (the category whose objects are
closed (n− 1)-manifolds and whose morphism are n-dimensional bordisms (up to homotopy)
between them) to the category of vector spaces and linear maps:

Definition 4 ([Ati88]). An n-dimensional topological quantum field theory (TQFT) Z is a
symmetric monoidal functor

Z : Bordn,n−1 → VectC.

In other words, it is a functor assigning

(1) a finite-dimensional complex vector space Z(Σ) to each compact oriented smooth
(n− 1)-manifold Σ, and

(2) a vector Z(Y ) ∈ Z(Σ) for each compact oriented n-manifold Y with boundary Σ.

This functor should satisfy the following axioms:

(A1) (Involutory) Z(Σ∗) = Z(Σ)∗, where Σ∗ denotes Σ with opposite orientation, and
Z(Σ)∗ is the dual space.

(A2) (Multiplicativity) Z(Σ1 ⊔ Σ2) = Z(Σ1)⊗ Z(Σ2).
(A3) (Associativity) For a composite bordism Y = Y1 ∪Σ2 Y2

Σ1 Σ2 Σ3

Y1 Y2 ,

Z(Y ) = Z(Y2) ◦ Z(Y1) ∈ Hom(Z(Σ1), Z(Σ3)).
(A4) Z(∅) = C.
(A5) Z(Σ× I) = idZ(Σ).
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One of the main goal of quantum topology is to produce a lot of interesting TQFTs
with potential applications to low-dimensional topology. In a slightly different direction,
classification of TQFTs itself is an interesting problem in its own right. The classification of
fully extended TQFTs was conjectured by Baez and Dolan [BD95], known as the cobordism
hypothesis, and was proved by Lurie [Lur09]. While we will not go to this direction in this
course, let me just mention an old result by Dijkgraaf on classification of 2d TQFTs, as it
might be useful later:

Theorem 4 ([Dij89]). The category Bord2,1 is freely generated, as a symmetric monoidal
category, by a commutative Frobenius object S1. In other words, the data of a 2d TQFT
Z : Bord2,1 → Vect is equivalent to the data of a commutative Frobenius algebra Z(S1) ∈ Vect.

Definition 5. A Frobenius algebra A is a finite-dimensional unital associative algebra
(A, µ, η) equipped with a linear form (“counit”, sometimes called “trace”) ϵ : A → k such
that ϵ ◦ µ : A⊗ A → k is a non-degenerate pairing (i.e. induces an isomorphism A → A∗).

Equivalently, a Frobenius algebra is a tuple (A, µ, η,∆, ϵ) such that

(1) (A, µ, η) is an algebra with unit η,
(2) (A,∆, ϵ) is a coalgebra with counit ϵ, and
(3) the Frobenius relation

(µ⊗ id) ◦ (id⊗∆) = ∆ ◦ µ = (id⊗ µ) ◦ (∆⊗ id)

is satisfied.

We say that a Frobenius algebra is commutative if the associated algebra is commutative (or,
equivalently, the associated coalgebra is cocommutative).

Diagrammatically, reading from left to right, we can draw µ, η,∆, and ϵ as

µ = , η = , ∆ = , ϵ = .

Then, the Frobenius relation can be expressed as

= = .

Examples of Frobenius algebras include matrix rings, group rings, ring of characters of a
representation, cohomology rings, etc.

Example 1 (CPN−1-model). In CPN−1-model, we assign

Z(S1) = H∗(CPN−1) ∼=
C[x]

(xN = 0)
.

The counit is given by the linear map

ϵ : Z(S1) → C

xk 7→

{
1 if k = N − 1

0 otherwise
,
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and the coproduct is given by

∆ : Z(S1) → Z(S1)⊗ Z(S1)

xk 7→
∑

0≤j≤N−1−k

xk+j ⊗ xN−1−j.

This is the 2d TQFT behind the slN link homologies, which we might cover later in the
course.

The CPN−1-model admits a nice deformation, namely to use U(N)-equivariant cohomology
instead of ordinary cohomology. That is, instead of setting xN = 0, we set some generic
monic polynomial of degree N to be 0:

Z ′(S1) =
R[x]

((x− x1) · · · (x− xN) = 0)
,

where R := C[x1, · · · , xN ]
SN . This is the 2d TQFT behind the equivariant slN link homologies.

The counit remains the same as in the undeformed case.

Exercise 2. Compute Z(Σg) in the CPN−1-model and its deformation, where Σg denotes
the closed oriented surface of genus g.

2.1.2. Quantum groups and the work of Reshetikhin and Turaev. Witten’s generalization of
Jones polynomial to 3-manifolds was made mathematically precise by Reshetikhin and Turaev
[RT91] and is now commonly known as the Witten-Reshetikhin-Turaev (WRT) invariant.

Reshetikhin and Turaev’s construction, namely construction of link invariants from repre-
sentations of a quantum group, or more generally a ribbon category, and a 3d TQFT from
representations of a quantum group at a root of unity, or more generally a (semisimple)
modular tensor category (MTC), will be covered in detail in this course, mostly following
[BK01] or [Tur94].

The basic idea is that, C is the category of line operators, and the vector space associated
to the torus T 2 is finite dimensional and has basis labeled by simple objects of C:

Z

 V

 ∈ Z


 .

Theorem 5 ([RT91, Tur94]). Given an MTC C, one can construct an invariant of 3-manifolds
with colored links inside them. Moreover, this can be extended to a 3d TQFT.

2.1.3. Potential topics. Let me conclude this overview by listing tentative topics to be covered
in this course.

For the first half of this course, the current plan is to cover the following topics:

• Finite type (Vassiliev) invariants and perturbative Chern-Simons theory
• Basics of Hopf algebras, quantum groups and their representation theory
• Reshetikhin-Turaev construction (ribbon categories and link invariants, modular
tensor categories and 3d TQFTs)

The later half of this course will cover more recent topics, more relevant to current research:

• Stated skein algebras and modules, and quantum trace maps
• Non-semisimple invariants and TQFTs (Costantino-Geer-Patureau invariants)
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We may add or remove topics from this list depending on how much time we have left as
the course proceeds.

2.2. Temperley-Lieb-Jones algebroids. Before delving into ribbon categories, let’s first
study a concrete example, namely Temperley-Lieb algebroids. We follow [Wan10, Ch. 1] in
this subsection. (See also [Tur94, Ch. 12])

2.2.1. Temperley-Lieb algebroids.

Definition 6. Let k be a field. An k-algebroid is a small k-linear category (i.e. Hom sets
are vector spaces, and the composition maps are bilinear).

For a k-algebroid Λ, we will sometimes denote its set of objects as Λ0, and Hom(x, y) as

xΛy.

Proposition 2. For any objects x, y in a k-algebroid Λ, xΛx is a k-algebra, and xΛy is a

yΛy − xΛx-bimodule.

Definition 7. The Temperley-Lieb (TL) algebroid TL(A) is a C(A)-algebroid defined as
follows:

(1) An object of TL(A) is the unit interval I with a finite set of points in the interior of
I, allowing the emptyset. Let |x| denote the number of points in x, for x ∈ TL(A)0.

(2) The set of morphisms xTL(A)y is given by the vector space spanned by the isotopy
classes of smooth, pairwise non-intersecting arcs and loops in the box I × I whose
intersection with I × {0} is x and the intersection with I × {1} is y, modulo the
relation

= d := −A2 − A−2.

(3) Composition of morphism is given by vertical concatenation of boxes. For instance,

◦ = = d .

Remark 3. Note, all objects x of the same cardinality |x| are isomorphic. We will denote
the isomorphism class of objects x with |x| = n by 1n.

Definition 8. Given a natural number n ∈ N, the Temperley-Lieb algebra TLn(A) is the
algebra Hom(1n, 1n) of the TL algebroid.

Definition 9. The Markov trace of TLn(A) is the algebra homomorphism

tr : TLn(A) → C(A)

defined by the tracial closure: close up the top and the bottom ends by non-intersecting arcs
connecting top to bottom, and then evaluate it to dm, where m is the number of circles after
the closure. For instance,

tr = = d.
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Let {Ui}1≤i≤n−1 be the TL diagrams in TLn(A) shown below:

· · · , · · · , · · · · · · .

They generate TLn(A) as a unital algebra.

Proposition 3. The set of all loopless TL diagrams forms a basis of TLn(A) as a vector
space. In particular,

dimTLn(A) =
1

n+ 1

(
2n

n

)
=: cn,

the n-th Catalan number.

Proposition 4. The generators {Ui}1≤i≤n−1 of TLn(A) satisfy the following relations:

(1) U2
i = d · Ui,

(2) UiUi±1Ui = Ui,
(3) UiUj = UjUi if |i− j| ≥ 2

In fact, these generate all the relations between Ui’s.

Theorem 6. TLn(A) is isomorphic to a direct sum of matrix algebras over C(A).

3. Lecture 3 (Tue Jan 30, 2024)

3.1. Temperley-Lieb-Jones algebroids (cont.)

3.1.1. Jones’ braid group representation. Recall that the n-strand braid group Bn has a
presentation

Bn = ⟨{σi}1≤i≤n−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i− j| ≥ 2⟩.
Proposition 5. The Kauffman bracket

⟨, ⟩ : C(A)[Bn] → TLn(A)

σi 7→ A · 1 + A−1Ui

induces a surjective algebra homomorphism.

Proof. It is straightforward to check that this map respects the braid relations. □

Remark 4. Since TLn(A) is isomorphic to a direct sum of matrix algebras, the Kauffman
bracket yields a representation of Bn, called the Jones representation.

3.1.2. Jones-Wenzl projectors. Recall that the n-th Chebyshev polynomial ∆n(d) is defined
inductively by ∆0(d) = 1, ∆1(d) = d, ∆n+1(d) = d∆n(d)−∆n−1(d). Note,

∆n([2]) = [n+ 1].

Theorem 7 (Jones-Wenzl projectors). TLn(A) contains a unique element pn characterized
by:

(1) pn ̸= 0.
(2) p2n = pn.
(3) Uipn = pnUi = 0 for all 1 ≤ i ≤ n− 1.

Moreover, pn can be written as pn = 1 + U , where U is a linear combination of non-trivial
monomials of Ui’s.
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Proof. For uniqueness, suppose pn exists and can be expressed as

pn = c 1 + U.

Then,

p2n = pn(c 1 + U) = c pn = c2 1 + c U,

so c must be 1. Suppose that pn = 1 + U and p′n = 1 + V both have the properties above.
Then,

p′n = (1 + U)p′n = pnp
′
n = pn(1 + V ) = pn.

This proves uniqueness.
Existence can be shown inductively by

p1 = ,

p2 = − 1

d
,

pn+1 =
· · ·
· · ·
pn − ∆n−1(d)

∆n(d)

· · ·
pn

· · ·
pn

.

□

For simplicity, we will sometimes use a strand labeled n for n parallel strands, and a box
for the corresponding Jones-Wenzl projector:

n
:=

· · ·
· · ·
pn .

Remark 5. Really, one should think of the Jones-Wenzl projector as the projector

pn : V ⊗n2 → Vn+1 ⊂ V ⊗n2 ,

where V2 denotes the standard 2-dimensional representation of SU(2) and Vn denotes the
n-dimensional irreducible representation.

3.1.3. Trivalent graphs and bases of morphism spaces. Consider (planar) uni-trivalent graphs
in the square I × I, allowing loops and multi-edges, such that all the trivalent vertices are
in the interior and all the univalent vertices are either in the bottom I × {0} or in the top
I × {1}. (The top and the bottom edges represent some objects of TL(A).)
Given such a uni-trivalent graph G, a coloring of G is an assignment of natural numbers

to each edge of G such that all the edges with univalent vertices are colored by 1.
A coloring is called admissible if for every trivalent vertex, the three colors a, b, c adjacent

to it satisfy

(1) a+ b+ c is even.
(2) a+ b ≥ c, b+ c ≥ a, c+ a ≥ b.



LECTURES ON QUANTUM TOPOLOGY 15

Any admissibly colored uni-trivalent graph with bottom object x and top object y represents
a morphism in xTL(A)y, by the following rules of insertions of Jones-Wenzl projectors:

3

21
:=

p3

p1 p2 .

The following proposition generalizes Proposition 3.

Proposition 6. Let x and y be two objects of TL(A) such that |x|+ |y| = 2m. Then

(1) dim xTL(A)y =
1

m+1

(
2m
m

)
.

(2) For any connected uni-trivalent tree G connecting x and y, the set of all admissible
colorings of G forms a basis of xTL(A)y.

3.1.4. Temperley-Lieb-Jones algebroids.

Definition 10. The Temperley-Lieb-Jones (TLJ) algebroid TLJ(A) is the C(A)-algebroid,
whose objects are objects of TL(A) but with natural number colors, and whose morhpisms
between x and y are formal linear combinations of uni-trivalent graphs with admissible
colorings compatible with the colored objects x, y.

Both TL(A) and TLJ(A) have tensor products which is horizontal juxtaposition, with the
empty object being the tensor unit. This makes them monoidal categories. Even better:

Theorem 8. TL(A) and TLJ(A) are ribbon categories.

We will study ribbon categories soon, so for now, let me just say informally that, a ribbon
category is a monoidal category with a braiding, a twist, and a compatible duality (cups and
caps).

Definition 11. Let L be a framed trivalent graph with an admissible coloring. Its Kauffman
bracket is called the colored Kauffman bracket ⟨L⟩.

Proposition 7. The colored Kauffman bracket satisfies

(1) i = [i+ 1] := qi+1−q−i−1

q−q−1 = (−A2)i+1−(−A2)−i−1

(−A2)−(−A2)−1 ,

(2) i = (−1)iAi(i+2) i

Definition 12. The n-colored Jones polynomial of an oriented link L Jn,L(q) is defined as

Jn,L(q = −A2) = ((−1)nAn(n+2))−w(L)⟨L⟩A,
where the colored Kauffman bracket is evaluated for L colored by n.

When n = 1, this is the usual Jones polynomial.

Remark 6. Note, the unknot colored by pn evaluates to ∆n([2]) = [n+ 1].

Exercise 3. Derive the skein relations given in Exercise 1. (Hint: color the strands by the
second Jones-Wenzl projector p2 and evaluate in TL(A).)
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4. Lecture 4 (Thu Feb 1, 2024)

4.1. Ribbon categories. We follow [Tur94, Ch. 1].

4.1.1. Monoidal categories. Recall that, for any category C, the Cartesian square of C –
C × C – is a category whose objects are pairs of objects of C, morphisms are ordered pairs of
morphisms, and the compositions are component-wise composition in C.

Definition 13. A category C is called monoidal if it is equipped with a functor (called the
tensor or monoidal product)

⊗ : C × C → C,
(A,B) 7→ A⊗B,

(f, g) 7→ f ⊗ g,

an object 1 (called the unit or identity object), and natural isomorphisms (respecively called
associator, left unitor and right unitor)

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C), A,B,C ∈ Ob C,
λA : 1⊗ A → A, ρA : A⊗ 1 → A, A ∈ Ob C,

which satisfy two families of coherence conditions corresponding to commutative diagrams
(respectively called the pentagon and the triangle diagrams)

((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)(A⊗ (B ⊗ C))⊗D

A⊗ (B ⊗ (C ⊗D))A⊗ ((B ⊗ C)⊗D)

and

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

,

and the equality

λ1 = ρ1 : 1⊗ 1 → 1.

A monoidal category is called strict if the natural isomorphisms α, λ, ρ are identities. It is
known (MacLane’s coherence theorem) that any monoidal category is equivalent to a strict
monoidal category.

Example 2. The category of vector spaces, Vectk, is a monoidal category.
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4.1.2. Braided categories. Let τ : C × C → C × C be the exchange functor, defined by
exchanging the components:

τ(A,B) = (B,A), A,B ∈ Ob (C × C)
τ(f, g) = (g, f).

Define

⊗op := ⊗ ◦ τ : C ⊗ C → C
(A,B) 7→ B ⊗ A,

(f, g) 7→ g ⊗ f.

Definition 14. A monoidal cateogry is called braided if it is equipped with a natural
isomorphism (called braiding)

β : ⊗ → ⊗op,

(i.e. a natural family of isomorphisms

β = {βA,B : A⊗B → B ⊗ A}A,B∈Ob C

where naturality means that (g ⊗ f)βA,B = βA′,B′(f ⊗ g) for any f : A → A′, g : B → B′)
such that the following diagrams (called hexagon diagrams) are commutative:

A⊗ (B ⊗ C) (B ⊗ C)⊗ A B ⊗ (C ⊗ A)

(A⊗B)⊗ C (B ⊗ A⊗ C) B ⊗ (A⊗ C)

and

(A⊗B)⊗ C C ⊗ (A⊗B) (C ⊗ A)⊗B

A⊗ (B ⊗ C) A⊗ (C ⊗B) (A⊗ C)⊗B

.

A braided category is called symmetric if the braiding satisfies

β−1A,B = βB,A, ∀A,B ∈ Ob C.

In this case, the braiding is called symmetry and is commonly denoted as σ.

4.1.3. String diagrams. From now on, let C be a strict monoidal category. Then, it is often
convenient to use the graphical notation of string diagrams.
A morphism f : X → Y in C will be depicted graphically as

f =:

X

Y

f .
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Composition of two morphisms f : X → Y and g : Y → Z is described by the vertical
concatenation

g ◦ f =

X

Z

g ◦ f =

X

Z

f

g
,

and the identity morphism idX is drawn as a line:

idX =

X

X

idX =:

X

X

The tensor product can be drawn by the horizontal juxtaposition:

f ⊗ g =

X ⊗ U

Y ⊗ V

f ⊗ g =:

X

Y

U

V

f ⊗ g =:

X

Y

U

V

f g .

The identity object 1 is naturally associated to the empty graph.
It is natural to depict a braiding by

A

B

B

A

βA,B =:

A

B

B

A

.

Then, the hexagon diagrams for the braiding becomes

A

B ⊗ C

B ⊗ C

A

=

A

B

B

AC

C

and

A⊗B

C

C

A⊗B

=

A B C

C A B

.

Proposition 8. Any braiding satisfies the Yang-Baxter identity:

(βB,C ⊗ idA)(idB ⊗ βA,C)(βA,B ⊗ idC) = (idC ⊗ βA,B)(βA,C ⊗ idB)(idA ⊗ βB,C).
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Proof.

A B C

C B A

=

A B ⊗ C

C ⊗B A

βB,C

=

A B ⊗ C

C ⊗B A

βB,C

=

A B C

C B A

□

4.1.4. Ribbon categories.

Definition 15. A monoidal category is called right (resp. left) rigid if for every object A,
there exists an object A∗ called the right dual (resp. an object ∗A called the left dual) and
associated morphisms

←
∪A : 1 → A⊗ A∗,

←
∩A : A∗ ⊗ A → 1 (for right duals)

→
∪A : 1 → ∗A⊗ A,

→
∩A : A⊗ ∗A → 1 (for left duals)

satisfying the zig-zag identities :

(idA ⊗
←
∩A)(

←
∪A ⊗ idA) = idA,

(
←
∩A ⊗ idA∗)(idA∗ ⊗

←
∪A) = idA∗

for right duals, and

(id∗A ⊗
→
∩A)(

→
∪A ⊗ id∗A) = id∗A,

(
→
∩A ⊗ idA)(idA ⊗

→
∪A) = idA

for left duals. The data of (right or left) duals is called a (right or left) duality in the monoidal
category.

Graphically, the zig-zag identities can be visualized as

A = A

for the first identity, and similarly for the other ones.

Definition 16. A twist (or blance) θ in a braided category C is a natural isomorphism of
the identity functor idC to itself:

θ : idC → idC,

(i.e. a natural family of isomorphisms

θ = {θA : A → A}A∈Ob C

where naturality means that θBf = fθA for any f : A → B) such that

θA⊗B = βB,AβA,B(θA ⊗ θB).
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By naturality of the braiding, we can write

θA⊗B = βB,AβA,B(θA ⊗ θB) = βB,A(θB ⊗ θA)βA,B = (θA ⊗ θB)βB,AβA,B.

Note also that θ1 = id1, which follows from

(θ1)
2 = (θ1 ⊗ id1)(id1 ⊗ θ1) = θ1 ⊗ θ1 = θ1

and invertibility of θ1.
Diagrammatically, the twist θA can be drawn as

A

,

and the compatibility with braiding can be drawn as

A⊗B

=

AB

=

A B

.

Definition 17. A ribbon category is a braided category equipped with a twist θ, and a

compatible (right) duality (∗,
←
∪,
←
∩), where compatibility means that, for any object A,

(θA ⊗ idA∗)
←
∪A = (idA ⊗ θA∗)

←
∪A .

Graphically, the compatibility of the duality with the twist can be depicted as

A A

=

A A

.

Remark 7. Just to summarize,

modular categories ⊂ ribbon categories ⊂ braided categories ⊂ monoidal categories.

We haven’t defined modular categories yet, but they will appear later in the course, when we
discuss 3-manifold invariants and 3d TQFTs.

5. Lecture 5 (Tue Feb 6, 2024)

5.1. Ribbon categories (cont.)

Proposition 9. For any object A of a ribbon category, there is a natural, monoidal isomor-
phism A

∼→ A∗∗. That is, ribbon categories are pivotal, and in particular, any right dual can
also be thought of as a left dual.

Proof. Consider the following morhpisms

α = ((
←
∩A ◦ βA,A∗)⊗ idA∗∗) ◦ (θA ⊗

←
∪A∗) ∈ Hom(A,A∗∗),

β = (
←
∩A∗ ⊗ θ−1A ) ◦ (idA∗∗ ⊗ (β−1A∗,A ◦

←
∪A)) ∈ Hom(A∗∗, A).
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In terms of string diagrams,

α =

A

A∗∗

A∗
, β =

A∗∗

A

A∗

We claim that β ◦ α = idA and α ◦ β = idA∗∗ so that they provide isomorphisms between A
and A∗∗. This can be shown by a sequence of elementary isotopies of the string diagrams,
each of which give the same morhpism thanks to the naturality of braiding, twist, and the
properties of the duality morphisms.
In a similar way, one can also show that this isomorphism is monoidal and natural. The

details are left as an exercise.1 □

Remark 8. Note, the twists in the definition of the isomorhpism A
∼→ A∗∗ are necessary for

monoidality.

It will be useful to define the following (left) duality morphisms, which are just β and α
composed with the usual (right) duality morphisms:

→
∪A := (idA∗ ⊗ θ−1A ) ◦ β−1A∗,A ◦

←
∪A,

→
∩A :=

←
∩A ◦ βA,A∗ ◦ (θA ⊗ idA∗).

That is,

A A
:=

A A

,
A A

:=

A A

.

It follows from Proposition 9 that they satisfy the zig-zag identities for left duals.

Example 3. The categories TL(A) and TLJ(A) we saw earlier are ribbon categories, with
obvious braiding, twist, and duality.

Example 4. Let R be a commutative ring with unit. Then, the category Proj(R) of finitely
generated projective R-modules (i.e. direct summands of Kn, n = 0, 1, 2, · · · ) and R-linear
homomorphisms is a ribbon category (albeit not an interesting one from the viewpoint of
application to knots):

• Braiding is given by flips (exchanges) βV,W = τV,W : V ⊗W → W ⊗ V .
• Twist is given by the identity endomorphism θV = idV .
• The duals are the dual modules V ∗ = HomR(V,R), with obvious associated morphisms.

Example 5. Let G be a multiplicative abelian group, R a commutative ring with unit,
c : G×G → R∗ a bilinear pairing (i.e. c(gg′, h) = c(g, h) c(g′, h) and c(g, hh′) = c(g, h) c(g, h′)
for any g, g′, h, h′ ∈ G), φ : G → R∗ a homomorphism such that φ(g2) = 1 for all g ∈ G.
Then, we can construct a ribbon category V(G,R, c, φ) as follows:

1As we will see later, this Proposition can be also seen as a corollary of a bigger theorem, Theorem 9.
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• Objects are elements of G.
• Morphisms are given by

Hom(g, h) =

{
R if g = h,

{0} if g ̸= h.

• Composition of two morphisms g → h → f is the product of the corresponding
elements of R if g = h = f , and 0 otherwise.

• The tensor product of g, h ∈ G is defined to be their product gh ∈ G.
• The tensor product gg′ → hh′ of two morphisms g → h and g′ → h′ is the product of
the corresponding elements of R if g = g′ and h = h′ and 0 otherwise.

• Define the braiding gh → hg = gh to be c(g, h) ∈ R.
• Define the twist g → g to be φ(g) c(g, g) ∈ R.
• The dual object g∗ is given by the inverse g−1, and the associated morphisms are the
endomorphisms of the unit of G represented by 1 ∈ R.

Exercise 4. Show that V(G,R, c, φ) is indeed a ribbon category.

Example 6. For any ribbon Hopf algebra H, the category Rep(H) of finite-dimensional
representations of H and H-linear homomorphisms is a ribbon category. We will study Hopf
algebras later in this course.

5.1.1. Trace and dimension.

Definition 18. The trace of an endomorphism f of an object V of V is defined as

Tr (f) :=
→
∩V ◦ (f ⊗ idV ∗) ◦

←
∪V ∈ End(1).

For any object V of V , the dimension of V is defined to be

dim (V ) := Tr (idV ).

Graphically, the trace of f : V → V can be presented as

f V .

Proposition 10. (1) For any morphisms f : V → W , g : W → V , we have

Tr (fg) = Tr (gf).

(2) For any endomorphisms f, g of objects of V, we have

Tr (f ⊗ g) = Tr (f) Tr (g).

(3) For any morhpism k : 1 → 1, we have

Tr (k) = k.

5.2. Invariants of colored ribbon graphs.
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5.2.1. Category of colored ribbon graphs. Let V be a ribbon category.

Definition 19. A ribbon graph is a compact oriented surface in R3 decomposed into bands,
annuli, and coupons. Bands and annuli are oriented, and coupons have bottom and top bases.
The ends of bands must lie on the bases of coupons.

We will also consider ribbon graphs in R2× I, in which case we allow the ends of the bands
to end on either R2 × {0} or R2 × {1} as well.

See the figure below for an example of a ribbon graph in R2 × I:

Definition 20. A V-coloring of a ribbon graph is an assignment of an object of V to
each band and annulus, and a morphism f : V ϵ1

1 ⊗ · · · ⊗ V ϵm
m → W ν1

1 ⊗ · · · ⊗W νn
n to each

coupon with m (resp. n) bands on the bottom (resp. top) with orientation ϵ1, · · · , ϵm (resp.
ν1, · · · , νn) colored by V1, · · · , Vm (resp. W1, · · · ,Wn). Here, ϵ = +1 (resp. −1) corresponds
to the upward (resp. downward) direction.

f

V1 V2

· · ·

W1W2

· · ·

Definition 21. The category of colored ribbon graphs over V , RibV , is defined as follows:

(1) The objects of RibV are finite sequence

((V1, ϵ1), · · · , (Vm, ϵm)), m ∈ N,

where V1, · · · , Vm are objects of V and ϵ1, · · · , ϵm ∈ {±1}.
(2) A morphism η → η′ in RibV is an isotopy type of a colored ribbon graph in R2 × I

such that η (resp. η′) is the sequence of colors and directions of those bands which hit
the bottom (resp. top) boundary intervals.
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6. Lecture 6 (Thu Feb 8, 2024)

6.1. Invariants of colored ribbon graphs (cont.)

6.1.1. Reshetikhin-Turaev functor. The main theorem for our discussion of ribbon categories
is the existence of the following functor, sometimes called the Reshetikhin-Turaev functor :

Theorem 9 ([Tur94, Thm 2.5]). Let V be a strict ribbon category with braiding β, twist θ,
and compatible duality (∗, b, d). Then there exists a unique monoidal functor

F = FV : RibV → V
satisfying the following conditions:

(1) F maps any object (V,+1) to V and any object (V,−1) to V ∗.
(2) F maps the string diagrams of braiding, twist, cups and caps (thought of as a colored

ribbon graph) to the corresponding morphisms in V:

V

W

W

V

7→ βV,W ,

V

7→ θV ,
V

7→
←
∪V ,

V 7→
←
∩V

(3) F maps the elementary colored ribbon graph with coupon colored by f to f :

f
· · ·

· · ·
7→ f

As a result, given a colored ribbon graph L, F (L) is an isotopy invariant.

Remark 9. This is a far-reaching generalization of the Jones polynomial of links. In particular,
when V = Rep Uq(sl2)

fin ∼= TLJ(A) is the category of finite-dimensional representations of
Uq(sl2) and L is a link colored by the fundamental representation, then F (L) is the Jones
polynomial.

Proof of Theorem 9. The first step is the following lemmas which presents the category of
colored ribbon graphs in terms of generators and relations:

Lemma 1. The category RibV is generated by the colored ribbon tangles

V

W

W

V

,

V

W

W

V

,

V

W

W

V

,

V

W

W

V

,

V

,

V

,
V

,
V

,

where V,W run over objects of V, and all elementary colored ribbon graphs.
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Proof. By choosing a generic diagram, we can decompose any colored ribbon graph into
crossings, twists, cups and caps, and elementary colored ribbon graphs. Furthermore, by
rotating crossings in wrong orientation, we can make all the crossings to be of the types
given above. Finally, cups and caps in wrong orientation can be expressed in terms of the
generators, as we’ve seen previously. □

Lemma 2. The following relations form a complete set of relations between the generators
of RibV :

U V W

W V U

=

U V W

W V U

,

V =

V

, V =

V

,

V

W

W

V

=


W

V

V

W

−1

,

V

=


V


−1

,

V W

=

V W

,

V W

=

V W

,

V

W

W

V

=


W V

V W


−1

,

V

W

W

V

=


W V

V W


−1

,
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V

=

V

,

· · ·

· · ·
=

· · ·

· · ·
,

· · ·

· · ·
=

· · ·

· · ·
,

· · ·

· · ·

Full +1 twist

Full −1 twist

=

· · ·

· · ·
.

Proof sketch. Any two isotopic generic diagrams of colored ribbon tangles may be obtained
from each other by a finite sequence of the following transformations:

(I) An isotopy in the class of generic diagrams.
(II) An isotopy interchanging the order of two singular points with respect to the height

function.
(III) Birth or annihilation of a pair of local extrema.
(IV) Isotopies shown below:

↔ , ↔

Transformations of type (I) does not change the word at all. One can check that the
transformation of words under transformations of types (II), (III) and (IV) can be derived
from the relations given above.
In case of colored ribbon graphs (i.e. with coupons), any isotopy is a composition of

isotopies of the following two kinds:

(i) Isotopies keeping the bases of all coupons horizontal.
(ii) ±2π rotation of a coupon.

In fact, isotopies of type (ii) can be presented as compositions of isotopies of type (i). Further-
more, isotopies of type (i) can be presented as composition sof the following transformations:

(iii) Ambient isotopies in R⊗ I keeping the bases of coupons horizontal.
(iv) The Reidemeister moves R1’, R2 and R3 away from coupons.
(v) Isotopies which push a strand of the diagram over or under a coupon.
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Again, one can check that the transformation of words under transformations of types (iii),
(iv) and (v) can be derived from the relations given above. □

Now that we have a description of RibV in terms of generators and relations, we need to
check that the values of F on those generators respect the relations.
Uniqueness of F : From the conditions of the theorem, the value of F on any object

((V1, ϵ1), · · · , (Vm, ϵm)) of RibV must be the object V ϵ1
1 ⊗ · · · ⊗ V ϵm

m of V , and the value of the
generators of RibV are uniquely determined. This implies uniqueness of the functor.

Existence of F : Existence can be shown by checking that the assignments

V

W

W

V

7→ βV,W ,

V

7→ θV ,
V

7→
←
∪V ,

V 7→
←
∩V ,

V

W

W

V

7→ β−1W,V ,

V

W

W

V

7→ β−1W ∗,V ,

V

W

W

V

7→ βV,W ∗ ,

V

7→ θ−1V

satisfy all the relations between the generators:

• The first one is the Yang-Baxter equation, which we verified earlier.
• The second and third relations follow from the definition of duality, and the fourth and
fifth relations are immediate from our definition of the value of F on those generators.

• The sixth and seventh relations follow from naturality of braiding.
• The eighth and ninth relations can be reduced to showing the relation

W V

=

W V

and similar diagrams, but this just follows from the naturality of braiding.
• Using the previous relation, the tenth relation can be reduced to showing the relation

θ2V = .
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This follows from the following identity which follows from naturality of the twist and
its compatibility with duality:

V
=

V

idV⊗V ∗

V ⊗ V ∗

=

V

idV⊗V ∗

V ⊗ V ∗

=

V

=

V

• The last three relations involve a coupon. For the first two, we can first re-orient all
the downward-oriented strands upward and replace the colors with their dual objects.
This does not change their value under F . Once all the strands are oriented upward,
the relations just follow from naturality of the braiding.

• For the very last relation, we may again re-orient all the strands so that they are all
oriented upward. Thanks to the naturality of twist, it suffices to show that the tangle
corresponding to a full positive twist, with strands colored by V1, · · · , Vm, evaluate
to θV1⊗··· ,⊗Vm . This can be seen easily from the defining property of the twist (and
induction on the number of strands).

□

7. Lecture 7 (Tue Feb 13, 2024)

7.1. Hopf algebras. We follow [Kas23, Ch. 1-5] and [KRT97, Ch. 2-4].

7.1.1. Algebras and coalgebras. Let’s start by reviewing basic definitions of algebras and
coalgebras.

Definition 22. An algebra over a field k, or a k-algebra, is a triple (A, µ, η) consisting of a
k-vector space A, a linear map µ : A⊗ A → A called product, and a linear map η : k → A
called unit such that

(1) µ(µ⊗ idA) = µ(idA ⊗ µ),
(2) µ(η ⊗ idA) = idA = µ(idA ⊗ η).

In terms of string diagrams, we will denote the product and the unit as

µ =: , η =:

Definition 23. The opposite product of an algebra A := (A, µ, η) is the linear map

µop := µσA,A : A⊗ A → A

x⊗ y 7→ µ(y ⊗ x).

Proposition 11. If A := (A, µ, η) is an algebra, then its opposite algebra Aop := (A, µop, η)
is also an algebra.

Definition 24. A coalgebra over a field k, or a k-coalgebra, is a triple (C,∆, ϵ) consisting
of a k-vector space C, a linear map ∆ : C → C ⊗ C called coproduct, and a linear map
ϵ : C → k called counit such that
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(1) (∆⊗ idC)∆ = (idC ⊗∆)∆,
(2) (ϵ⊗ idC)∆ = idC = (idC ⊗ ϵ)∆.

In terms of string diagrams, we will denote the coproduct and the counit as

∆ =: , ϵ =:

Notation 1 (Sweedler’s sigma notation for coalgebras). Sweedler’s sigma notation allows us
to write formally the coproduct of an element of a coalgebra in the form

∆x =
∑
(x)

x(1) ⊗ x(2),

where the meaning of the sum is that it is a finite sum of the form ∆x =
∑n

i=1 ai ⊗ bi.
Likewise, iterated coproducts ∆(m) := (∆(m−1) ⊗ idC)∆ (with ∆(0) = ϵ, ∆(1) = idC) can be

written formally as

∆(m)x =
∑
(x)

x(1) ⊗ · · · ⊗ x(m).

Definition 25. The opposite coproduct of a coalgebra C := (C,∆, ϵ) is the linear map

∆op := σC,C∆ : C → C ⊗ C

x 7→
∑
(x)

x(2) ⊗ x(1).

Proposition 12. If C := (C,∆, ϵ) is a coalgebra, then its opposite coalgebra Ccop :=
(C,∆op, ϵ) is also a coalgebra.

Theorem 10 (The Fundamental theorem of coalgebras). Let C = (C,∆, ϵ) be a coalgebra
and x ∈ C. Then, there exists a finite-dimensional sub-coalgebra X ⊂ C containing x.

Remark 10. There’s no counterpart of this theorem for algebras. For instance, x ∈ C[x] is
a simple counterexample.

Proof of Theorem 10. Let {αi}i∈I and {βj}j∈J be two finite sets of linearly independent
elements of C such that

∆(3)(x) =
∑
i∈I
j∈J

αi ⊗ xi,j ⊗ βj

for some xi,j ∈ C. Let X ⊂ C be the vector subspace spanned by {xi,j}(i,j)∈I×J . We will
show that X is a sub-coalgebra of C, and for that we need to show ∆(X) ⊂ X ⊗X.
Firstly, note that∑

i∈I
j∈J

αi ⊗ (∆xi,j)⊗ βj = ∆(4)x =
∑
k∈I
j∈J

(∆αk)⊗ xk,j ⊗ βj.

By linear independence of βj’s, we have∑
i∈I

αi ⊗∆xi,j =
∑
k∈I

∆αk ⊗ xk,j,
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and linear independence of αi’s imply that

∆αk =
∑
i∈I

αi ⊗ αi,k , ∆xi,j =
∑
k∈I

αi,k ⊗ xk,j

for some {αi,k}i,k∈I ⊂ C. Therefore, ∆(X) ⊂ C ⊗X.
Likewise, ∑

i∈I
j∈J

αi ⊗ (∆xi,j)⊗ βj = ∆(4)x =
∑
i∈I
l∈J

αi ⊗ xi,l ⊗ (∆βl),

and by a similar argument, we can deduce that ∆(X) ⊂ X ⊗ C as well.
Therefore, ∆(X) ⊂ C ⊗X ∩X ⊗ C = X ⊗X. □

7.1.2. Convolution algebras.

Definition 26. Let A be an algebra and C a coalgebra. The convolution algebra L(C,A) is
the vector space of linear maps from C to A, with the product µ : L(C,A)⊗L(C,A) → L(C,A)
defined by

µ(f ⊗ g) =: f ∗ g := µA(f ⊗ g)∆C ,

and the unit given by η1 := ηAϵC .

Proposition 13. The convolution algebra L(C,A) is an algebra.

Proof. Diagrammatically, the convolution product and the unit are given by

f ∗ g := f g

µA

∆C

, η1 :=

ηA

ϵC

It is straightforward to check that the associativity and unitality of the convolution algebra
follows from those of the algebra A and coassociativity and counitality of the coalgebra C. □

Corollary 1. The dual space C∗ = L(C,k) of a coalgebra C is an algebra with the convolution
product

µC∗ = ∆∗|C∗⊗C∗ .

As we will see, a lot of concepts that we will encounter can be nicely phrased in terms of a
convolution algebra.

7.1.3. Restricted (or finite) dual of an algebra. White the dual space C∗ of a coalgebra C is
always an algebra (Corollary 1), it is not always true that the dual space A∗ of an algebra A
is a coalgebra, when A is infinite dimensional. This is because the image of

µ∗ : A∗ → (A⊗ A)∗ ⊃ A∗ ⊗ A∗

does not always lie in A∗ ⊗ A∗. This motivates the following definition:

Definition 27. The restricted (or finite) dual Ao of an algebra A is the vector subspace of
A∗ given by

Ao := (µ∗)−1(A∗ ⊗ A∗).
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It turns out that the restricted dual is nicely characterized by matrix coefficients of finie
dimensional representations of A.

Theorem 11. The restricted dual Ao of any algebra A is the linear span of the matrix
coefficients of all finite dimensional representations of A.

Proof. Suppose that λ : A → End(V ) is an n-dimensional (left) representation of A so that,
with respect to some basis {vi}1≤i≤n of V ,

(λx)vi =
∑

1≤j≤n

vj⟨λj,i, x⟩

for any x ∈ A. Then,∑
1≤j≤n

vj⟨µ∗λj,i, x⊗ y⟩ =
∑

1≤j≤n

⟨λj,i, xy⟩ = (λ(xy))vi

= (λx)(λy)vi =
∑

1≤k≤n

(λx)vk⟨λk,i, y⟩ =
∑

1≤j,k≤n

vj⟨λj,k, x⟩⟨λk,i, y⟩ =
∑

1≤j,k≤n

vj⟨λj,k ⊗ λk,i, x⊗ y⟩.

In other words,

µ∗λj,i =
∑

1≤k≤n

λj,k ⊗ λk,i,

and the matrix coefficients λj,i ∈ A∗ lie in Ao.
Now, it suffices to show that, for any element f ∈ Ao, there exists a finite dimensional

(left) A-module Vf such that f is a linear combination of the matrix coefficients of this
representation, with respect to some basis. For this, consider the dual space A∗ as a left
A-module, with the left A-action given by the dual right multiplications R∗x ∈ End(A∗). Let

Vf := R∗Af ⊂ A∗

be the vector subspace given by the orbit of f with respect to this action of A on A∗. That
is, we have an algebra morphism

λ : A → End(Vf ).

The condition f ∈ Ao implies that

µ∗f =
∑

1≤i≤n

gi ⊗ hi

for some n and gi, hi ∈ A∗. Since

⟨R∗xf, y⟩ = ⟨f, yx⟩ = ⟨µ∗f, y ⊗ x⟩ =
∑

1≤i≤n

⟨gi, y⟩⟨hi, x⟩ =
〈 ∑

1≤i≤n

gi⟨hi, x⟩, y
〉
,

we have

R∗xf =
∑

1≤i≤n

gi⟨hi, x⟩,

and in particular, Vf is in the linear span of {gi}1≤i≤n; it is finite dimensional.
Let {vi}1≤i≤m be a linear basis of Vf ⊂ A∗. Then, for any x ∈ A,

R∗xf =
∑

1≤i≤m

vi⟨wi, x⟩
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for some wi ∈ A∗. Note,

(1) f = R∗1f =
∑

1≤i≤m

vi⟨wi, 1⟩,

and also

⟨f, x⟩ = ⟨R∗xf, 1⟩ =
∑

1≤i≤m

⟨vi, 1⟩⟨wi, x⟩ =
〈 ∑

1≤i≤m

⟨vi, 1⟩wi, x

〉
,

which implies

(2) f =
∑

1≤i≤m

⟨vi, 1⟩wi.

Let zi ∈ A be some vectors dual to wi in such a way that

R∗zif = vi.

Then we have

(λx)vi = (λx)R∗zif = R∗xzif =
∑

1≤j≤m

vj⟨wj, xzi⟩ =
∑

1≤j≤m

vj⟨R∗ziwj, x⟩,

i.e.

λi,j = R∗zjwi.

Finally, f is a linear combination of λi,j’s, because

f
(1)
=

∑
1≤j≤m

vj⟨wj, 1⟩ =
∑

1≤j≤m

R∗zjf⟨wj, 1⟩

(2)
=

∑
1≤i,j≤m

⟨vi, 1⟩⟨wj, 1⟩R∗zjwi =
∑

1≤i,j≤m

⟨vi, 1⟩⟨wj, 1⟩λi,j.

□

Corollary 2. For any algebra A,

µ∗(Ao) ⊂ Ao ⊗ Ao.

Therefore, Ao is a coalgebra.

Remark 11. There is a natural equivalence

HomAlgk(A,C
∗) ≃ HomCoalgk(C,A

o)

for all algebra A and coalgebra C.

8. Lecture 8 (Thu Feb 15, 2024)

8.1. Hopf algebras (cont.)
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8.1.1. Bialgebras and Hopf algebras.

Definition 28. A bialgebra is a tuple (B, µ, η,∆, ϵ), where (B, µ, η) is an algebra, (B,∆, ϵ)
is a coalgebra, and the linear maps ∆ and ϵ are algebra morphisms (or, equivalently, µ and η
are coalgebra morphisms).

In terms of string diagrams, that ∆ is an algebra morphism means

= , = ,

and that ϵ is an algebra morhpism means

= , = 1 .

Example 7. For any monoid M , the monoid algebra k[M ] is a bialgebra with coproduct
∆(x) = x⊗ x and counit ϵ(x) = 1, for all x ∈ M .

Definition 29. A Hopf algebra (over a field k) is a bialgebra H such that the identity map
idH is invertible in the convolution algebra End(H) of endomorphisms of H.

The convolution inverse of idH is denoted by S and is called the antipode of H.

In terms of string diagrams,

S = = S .

Commutative and cocommutative Hopf algebras are closely related to groups and Lie
algebras.

Example 8. For any group G, the group algebra k[G] is a cocommutative Hopf algebra with

∆(g) = g ⊗ g, ϵ(g) = 1, S(g) = g−1

for any g ∈ G.
It’s dual algebra k[G]∗ is the commutative algebra kG of k-valued functions on G. If G is

finite, kG is a Hopf algebra with

∆(f)(g ⊗ h) = f(gh), ϵ(f) = f(e), S(f)(g) = f(g−1)

for any f ∈ k
G.

Example 9. Let V be a vector space. Then, the tensor algebra T (V ) is a cocommutative
Hopf algebra, with

∆(x) = x⊗ 1 + 1⊗ x, ϵ(x) = 0, S(x) = −x

for any x ∈ V .

Example 10. Let g be a Lie algebra. Then, the universal enveloping algebra U(g), which is
a quotient of T (g) by relations x⊗ y − y ⊗ x = [x, y], is also a cocommutative Hopf algebra.

Below, we list some properties of a Hopf algebra.
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Proposition 14. In any Hopf algebra H = (H,µ, η,∆, ϵ, S), the product µ (resp. the coproduct
∆) is an invertible element of the convolution algebra L(H ⊗H,H) (resp. L(H,H ⊗H)) with
the inverse

µ := µop(S ⊗ S) =

resp. ∆ := (S ⊗ S)∆op =

.

Proof. Here’s a graphical proof that µ ∗ µ is the convolution identity:

µ ∗ µ = = = = = .

The rest of the proof is similar. □

Exercise 5. Show that if H := (H,µ, η,∆, ϵ, S) is a Hopf algebra, then

Hop,cop := (H,µop, η,∆op, ϵ, S)

is also a Hopf algebra.

Exercise 6. Show that if H = (H,µ, η,∆, ϵ, S) is a Hopf algebra with invertible antipode S,
then

Hcop := (H,µ, η,∆op, ϵ, S−1)

and

Hop := (H,µop, η,∆, ϵ, S−1)

are also Hopf algebras.

Proposition 15. In any Hopf algebra H, the antipode is a Hopf algebra morphism from H
to Hop,cop. That is,

Sµ = µop(S ⊗ S),

∆S = (S ⊗ S)∆op,

ϵS = ϵ,

Sη = η.

Proof. Note that the RHS of the first two identities are the convolution inverses of the product
and coproduct that appeared in Proposition 14. By uniqueness of convolution inverse, it
suffices to show that Sµ and ∆S are also convolution inverses of µ and ∆, respectively. This
can be checked easily using graphical calculus:

µ ∗ (Sµ) = = = =

and likewise for other identities.
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For the third and fourth identity,

ϵS = = = = = ,

and similarly for Sη = η. □

Corollary 3. If H is either commutative or cocommutative, then the antipode is involutory
(i.e. S2 = idH).

Proof. Thanks to the uniqueness of convolution inverse, it suffices to check that S2 is the
convolution inverse of S. Using Proposition 15 and commutativity (or cocommutativity), we
have

S ∗ S2 = = = = ,

and likewise, S2 ∗ S = ηϵ. Therefore, S2 = idH whenever H is either commutative or
cocommutative. □

The bialgebra and Hopf algebra structures are exactly what is necessary for for an algebra
for its representations to have tensor products and duals:

Proposition 16. Let B = (B, µ, η,∆, ϵ) be a bialgebra. Then, the category B−Mod of left
B-modules form a monoidal category.

Proof. The coproduct ∆ equips the tensor product U ⊗ V of two B-module a B-module
structure by

b(u⊗ v) := ∆(b)(u⊗ v) =
∑
(b)

b(1)u⊗ b(2)v,

for any b ∈ B, u ∈ U and v ∈ V . Moreover, the counit ϵ equips the ground field k with a
trivial B-module structure by

b z := ϵ(b) z

for any b ∈ B and z ∈ k.
For three B-modules U, V,W , we have the following canonical isomorphisms in B−Mod:

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W )

(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w)

and

k⊗ V ∼= V ∼= V ⊗ k

1⊗ v 7→ v 7→ v ⊗ 1.

One can easily check that that these satisfy the axioms of a monoidal category. □

Proposition 17. Let H be a Hopf algebra. Then, the category H−Modfin of finite dimensional
left H-modules form a rigid monoidal category (i.e. every object has duals).
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Proof. The antipode S equips the dual space V ∗ of any left H-module V an H-module
structure by

⟨x f, v⟩ := ⟨f, S(x)v⟩

for any x ∈ H, f ∈ V ∗, and v ∈ V . This is indeed an H-module structure, because

⟨(xy) f, v⟩ = ⟨f, S(xy)v⟩ = ⟨f, S(y)S(x)v⟩ = ⟨x(y f), v⟩.

It is easy to check that the dual representation V ∗ is indeed a dual object of V , with the
duality morphisms

evV : V ⊗ V ∗ → k

v ⊗ f 7→ f(v)

and

coevV : k → V ∗ ⊗ V

z 7→ z
∑
i∈I

ei ⊗ ei,

where {ei}i∈I is a basis of V and {ei}i∈I is a dual basis of V ∗. □

When we are dealing with infinite dimensional Hopf algebras, the appropriate notion of
dual is the restricted dual as we did for algebras:

Definition 30. The restricted dual Ho of a Hopf algebra H is defined as the restricted dual
of the underlying algebra.

Proposition 18. For any Hopf algebra H = (H,µ, η,∆, ϵ, S), the restricted dual Ho is a
Hopf algebra with respect to the dual structural maps:

µHo = ∆∗|Ho⊗Ho , ηHo = ϵ∗ : 1 7→ ϵ, ∆Ho = µ∗|Ho , ϵHo = ηo = η∗|Ho , SHo = So = S∗|Ho .

Example 11. The restricted dual of the Hopf algebra C[x] where x is a primitive element
with coproduct ∆(x) = 1⊗ x+ x⊗ 1 is given by

C[x]o ∼= C[C]⊗ C[t].

Here,

ρz := χz ⊗ 1, ∂ := 1⊗ t

are given by

⟨∂, xn⟩ = δ1,n, ⟨ρz, xn⟩ = zn.

9. Lecture 9 (Tue Feb 20, 2024)

9.1. Hopf algebras (cont.)
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9.1.1. Braided bialgebras.

Definition 31. A universal R-matrix in a bialgebra B = (B, µ,∆, η, ϵ) is an invertible
element R ∈ B ⊗B such that

(1) R ∗∆ = ∆op ∗R,
(2) R13 ∗R12 = (1⊗∆)R,
(3) R13 ∗R23 = (∆⊗ 1)R.

A bialgebra provided with a universal R-matrix is called braided (or quasitriangular).

In terms of string diagrams,

R

=

R

, R

R

=

R

,

RR

=

R

.

Observe that any cocommutataive bialgebra is braided with universal R-matrix R = 1⊗ 1.

Theorem 12. For a bialgebra B, the monoidal category B−Mod is braided if and only if
there exists a universal R-matrix.

Proof. Let B be a braided bialgebra with universal R-matrix R. Then for all pairs (V,W ) of
left B-modules, we define a natural isomorphism βV,W : V ⊗W → W ⊗ V of B-modules by

βV,W : V ⊗W → W ⊗ V

v ⊗ w 7→ σV,W (R(v ⊗ w)).

We claim that the family {βV,W} is a braiding in B−Mod. Firstly, it is indeed a morphism
in B−Mod (i.e. it is B-linear) because, for any x ∈ B,

βV,W (x(v ⊗ w)) = σV,W (R∆(x)(v ⊗ w))

= σV,W (∆op(x)R(v ⊗ w))

= ∆(x)σV,W (R(v ⊗ w))

= x βV,W (v ⊗ w).

Next, βV,W is an isomorphism, with the inverse given by

β−1V,W (w ⊗ v) = R−1(v ⊗ w).

Finally, for any triple of objects U, V,W ,

βU⊗V,W (u⊗ v ⊗ w) = σU⊗V,W (R((u⊗ v)⊗ w))

= σU⊗V,W ((∆⊗ 1)R(u⊗ v ⊗ w))

= σU,W (σV,W (R13R23(u⊗ v ⊗ w)))

= σU,W (R12(σV,W (R23(u⊗ v ⊗ w))))

= (βU,W ⊗ idV )(idU ⊗ βV,W )(u⊗ v ⊗ w)

and likewise,
βU,V⊗W = (idV ⊗ βU,W )(βU,V ⊗ idW ).

Therefore, {βV,W} is a braiding in B−Mod.
Conversely, suppose there exists a braiding β in B−Mod. Define an element R ∈ B⊗B by

R := σB,B(βB,B(1⊗ 1)).
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Let’s show that R is a universal R-matrix in B. For any elements v, w of B-modules V,W ,
let v : B → V and w : B → W be the B-linear maps uniquely determined by v(1) = v and
w(1) = w. Then, by naturality of braiding,

βV,W (v ⊗ w) = βV,W (v ⊗ w)(1⊗ 1) = (w ⊗ v)βB,B(1⊗ 1)

= σV,W (v ⊗ w)R = σV,W (R(v ⊗ w))

Then, by B-linearity of the braiding βB,B, we get

∆(x)σB,B(R) = σB,B(R∆(x))

for any x ∈ B. This verifies property (1) of the universal R-matrix.
The remaining properties (2 and 3) of the universal R-matrix follow from the properties

βU,V⊗W = (idV ⊗ βU,W )(βU,V ⊗ idW ),

βU⊗V,W = (βU,W ⊗ idV )(idU ⊗ βV,W )

of the braiding. □

Exercise 7. Show that the braiding βV,W = σV,WR satisfies βW,V βV,W = idV⊗W for all
modules V,W if and only if R−1 = σA,A(R).

Here are a few properties of the universal R-matrix:

Proposition 19. Let B be a braided bialgebra with universal R-matrix R. Then,

(1) it satisies the Yang-Baxter relation

R12R13R23 = R23R13R12,

(2)

(ϵ⊗ idB)R = 1 = (idB ⊗ ϵ)R,

(3) and if B has an antipode S (so that it is a Hopf algebra), then

R−1 = (S ⊗ idB)R.

Proof. For the first relation,

R12R13R23 =
R R R

(2)
=

R
R

(1)
=

R

R

(2)
= R R

R

= R23R13R12.

For the second relation, first note that

R =

R

(3)
=

RR

.

By invertibility of R, it follows that

R
= .
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The other equality

R
=

can be shown in a similar way.
The third relation is true because

((S ⊗ idB)R)R =

R R

(3)
=

R

=

R

= .

□

Proposition 20. Let (B, µ, η,∆, ϵ, S, R) be a braided Hopf algebra with an invertible antipode.
Consider the element

u := µ((S ⊗ idB)σB,B(R)) =
∑
i

S(ti)si ∈ B,

where R =
∑

i si ⊗ ti. Then

(1) u is invertible with inverse

u−1 = µ((S−1 ⊗ S)σB,B(R)) =
∑
i

S−1(ti)S(si),

and satisfies
∆(u) = (R21R)−1(u⊗ u),

(2) S2(x) = uxu−1 for all x ∈ B (i.e. S2 is an inner automorphism),
(3) uS(u) = S(u)u ∈ B is central and satisfies

S(uS(u)) = uS(u), ϵ(uS(u)) = 1, ∆(uS(u)) = (R21R)−2(uS(u)⊗ uS(u)).

Definition 32. A ribbon Hopf algebra is a braided Hopf algebra equipped with an invertible
central element ν (called a ribbon element) satisfying

ν2 = uS(u), S(ν) = ν, ϵ(ν) = 1, ∆(ν) = (R21R)−1(ν ⊗ ν).

Theorem 13. Let H be a ribbon Hopf algebra. Then the category H−Modfin of finite
dimensional left H-modules form a ribbon category.

Proof. We already know from Proposition 17 that H−Modfin is a rigid monoidal category, so
we just need to define the twist and show that it is compatible with the duality.

For each H-module V , define

θV : V → V

v 7→ ν−1 v.

This is an H-module isomorphism because ν−1 is central and invertible. Moreover, this is a
twist, because

θV⊗W (v ⊗ w) = ∆(ν−1)(v ⊗ w)

= R21R(ν−1 ⊗ ν−1)(v ⊗ w)

= σW,VRσV,WR(ν−1 ⊗ ν−1)(v ⊗ w)

= βW,V βV,W (θV ⊗ θW )(v ⊗ w).
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Let’s check the compatibility of this twist with duality. We need to check

(θV ⊗ idV ∗) coevV = (idV ⊗ θV ∗) coevV .

Fix a basis {ei}i∈I of V and a dual basis {ei}i∈I of V ∗. Let’s write

νei =
∑
j∈I

νj
i ej

for some matrix coefficients νj
i ∈ k. Then

⟨νej, ei⟩ = ⟨ej, S(ν)ei⟩ = ⟨ej, νei⟩ = νj
i ,

which means

νej =
∑
i∈I

νj
i e

i.

Then, for any z ∈ k,

(θV ⊗ idV ∗) coevV (z) = z(θV ⊗ idV ∗)
∑
i∈I

ei ⊗ ei

= z
∑
i∈I

νei ⊗ ei

= z
∑
i,j∈I

νj
i ej ⊗ ei

= z
∑
j∈I

ej ⊗ νej

= (idV ⊗ θV ∗) coevV (z).

Therefore, the twist is compatible with duality. □

9.1.2. Cobraided bialgebras. Sometimes, it will be more convenient to work with the following
dual notion:

Definition 33. A dual universal R-matrix in a bialgebra B = (B, µ,∆, η, ϵ) is a convolution
invertible element ρ ∈ (B ⊗B)∗ such that

(1) ρ ∗ µ = µop ∗ ρ,
(2) ρ1,3 ∗ ρ1,2 = ρ(idB ⊗ µ), and
(3) ρ1,3 ∗ ρ2,3 = ρ(µ⊗ idB).

A bialgebra provided with a dual universal R-matrix is called cobraided.

In terms of string diagrams,

ρ

=

ρ

, ρ

ρ

=

ρ

,

ρρ

=

ρ

.

Proposition 21. A dual universal R-matrix in a bialgebra B satisfies the following Yang-
Baxter relation in the convolution algebra (B⊗3)∗:

(3) ρ1,2 ∗ ρ1,3 ∗ ρ2,3 = ρ2,3 ∗ ρ1,3 ∗ ρ1,2.
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That is, in terms of string diagrams,

ρ ρ ρ
= ρ ρ

ρ

.

Proof. The proof is exactly the mirror image with respect to the horizontal axis of the proof
of the first identity in Proposition 19:

ρ ρ ρ (2)
=

ρ
ρ

(1)
=

ρ

ρ

(2)
= ρ ρ

ρ

.

□

Exercise 8. State and prove the properties of the dual universal R-matrix analogous to the
(2) and (3) of Proposition 19.

10. Lecture 10 (Thu Feb 22, 2024)

10.1. Quantum double. Drinfeld’s quantum double construction is a way of producing
braided Hopf algebras. We mostly follow [KRT97, Ch. 3], [ES98, Ch. 12], and [Kas23, Ch.
5].

10.1.1. Bialgebras twisted by cycles. Let B = (B, µ, η,∆, ϵ) be a bialgebra. Choose an
invertible element F ∈ B ⊗B and set

∆F : B → B ⊗B

x 7→ F∆(x)F−1,

i.e.

∆F :=
F F

,

where F denotes F−1.
This is clearly an algebra homomorphism. The following proposition gives a sufficient

condition for ∆F to be a coproduct with counit ϵ:

Proposition 22. (1) If F satisfies

F12 · (∆⊗ idB)(F ) = F23 · (idB ⊗∆)F,

i.e.

F
F

=
F

F

,

then ∆F is coassociative.
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(2) If F satisfies
(idB ⊗ ϵ)(F ) = 1 = (ϵ⊗ idB)(F ),

i.e.

F
= =

F
,

then ϵ is a counit with respect to ∆F .

Proof. (1) For any x ∈ B,

((∆F ⊗ idB)∆F )(x) = (∆F ⊗ idB)(F∆(x)F−1)

= (∆F ⊗ idB)(F ) · (∆F ⊗ idB)(∆(x)) · (∆F ⊗ idB)(F
−1)

= F12 · (∆⊗ idB)(F ) · (∆⊗ idB)(∆(x)) · (∆⊗ idB)(F
−1) · F−112 ,

and likewise

((idB ⊗∆)∆F )(x) = F23 · (idB ⊗∆)(F ) · (idB ⊗∆)(∆(x)) · (idB ⊗∆)(F−1) · F−123 .

Therefore, ∆F would be coassociative if

F12 · (∆⊗ idB)(F ) = F23 · (idB ⊗∆)F.

(2) For any x ∈ B,

(idB ⊗ ϵ)(∆F (x)) = (idB ⊗ ϵ)(F∆(x)F−1)

= (idB ⊗ ϵ)(F ) · x · (idB ⊗ ϵ)(F−1),

and this would be equal to x if

(idB ⊗ ϵ)(F ) = 1.

Likewise, we would have (idB ⊗ ϵ)(∆F (x)) = x if (ϵ⊗ idB)(F ) = 1.
□

Definition 34. A cycle in a bialgebra B = (B, µ, η,∆, ϵ) is an invertible element F ∈ B⊗B
satisfying the two conditions in Proposition 22.

Then, BF := (B, µ, η,∆F , ϵ) with the twisted coproduct

∆F := F ∗∆ ∗ F−1 ∈ L(B,B ⊗B)

is called the bialgebra twisted by cycle F .

For later purposes, we record the dual notions here.

Definition 35. A cocycle in a bialgebra B = (B, µ, η,∆, ϵ) is an invertible element ν in the
convolution algebra (B ⊗B)∗ such that

ν((ν ∗ µ)⊗ idB) = ν(idB ⊗ (ν ∗ µ)),
i.e.

ν
ν

=
ν

ν

,

and
ν(η ⊗ idB) = ϵ = ν(idB ⊗ η),
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i.e.
ν

= =
ν

.

Proposition 23. Let B = (B, µ, η,∆, ϵ) be a bialgebra and ν a cocycle in B. Then, Bν :=
(B, µν , η,∆, ϵ) with the twisted product

µν := ν ∗ µ ∗ ν
is a bialgebra.

10.1.2. Dual double construction.

Proposition 24. Let H = (H,µ, η,∆, ϵ, S) be a finite dimensional Hopf algebra with invertible

antipode S. Define H̃ := H∗ ⊗Hop. Let {ei}i∈I be a basis of H and {ei}i∈I a dual basis of
H∗. Then, the canonical element

F̃ :=
∑
i∈I

(1H∗ ⊗ ei)⊗ (ei ⊗ 1H) ∈ H̃ ⊗ H̃

is invertible, and F̃−1 is a cycle in H̃.

Proof. As an algebra, H∗ ⊗ Hop can be canonically identified with End(Hop) with the
convolution product. The canonical element

∑
i∈I ei ⊗ ei corresponds to idHop ∈ End(Hop)

under this identification, and its inverse is the antipode S−1 of Hop. From this, we see that

F̃ is invertible with inverse given by

F̃−1 =
∑
i∈I

(1H∗ ⊗ S−1ei)⊗ (ei ⊗ 1H).

Now let’s show that F̃−1 is a cycle. Since the coproduct (resp. product) in H∗ is the
transpose of the product (resp. coproduct) in H, we have

(∆⊗ idH)(F̃ ) = F̃13F̃23,

i.e.

= ,

and
(idH ⊗∆)(F̃ ) = F̃13F̃12,

i.e.

= = .

Since F̃12 and F̃23 commute,

(∆⊗ idH)(F̃ ) · F̃12 = F̃13F̃23F̃12

= F̃13F̃12F̃23

= (idH ⊗∆)(F̃ ) · F̃23.

Taking the inverse, we get

F̃−112 · (∆⊗ idH)(F̃
−1) = F̃−123 · (idH ⊗∆)(F̃−1),
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which is condition (1) of a cycle.
For condition (2), we can take 1H to be one of the basis vectors, e1, and take the remaining

ones in ker ϵ. Then,

(idH̃ ⊗ ϵH̃)(F̃
−1) = (idH̃ ⊗ (η∗ ⊗ ϵ))

(∑
i∈I

(1H∗ ⊗ S−1ei)⊗ (ei ⊗ 1H)

)
=
∑
i∈I

(1H∗ ⊗ S−1ei)⊗ (η∗(ei)⊗ ϵ(1H))

= 1H∗ ⊗ S−11H

= 1H∗ ⊗ 1H = 1H̃ ,

and likewise

(ϵH̃ ⊗ idH̃)(F̃
−1) =

∑
i∈I

(η∗(1H∗)⊗ ϵ(S−1ei))⊗ (ei ⊗ 1H)

= 1H∗ ⊗ 1H = 1H̃ .

□

Theorem 14. In the setup of Proposition 24, the bialgebra H̃F = H∗ ⊗Hop twisted by cycle

F := F̃−1 =
∑
i∈I

(1H∗ ⊗ S−1ei)⊗ (ei ⊗ 1H),

i.e.

F = S ∈ H̃F ⊗ H̃F ,

is a Hopf algebra with invertible antipode given by

SH̃F
: H̃F → H̃F

ℓ⊗ x 7→ f
(
SH∗(ℓ)⊗ S−1H (x)

)
f−1,

where f =
∑

i∈I e
i ⊗ ei ∈ H̃F , i.e.

SH̃F
=

S S

S ∈ L(H̃F , H̃F ).

Proof. Invertibility of SH̃F
follows from that of SH , so it suffices to show that, for all ℓ ∈ H∗

and x ∈ H,

(µH̃F
◦ (SH̃F

⊗ idH̃F
))∆F (ℓ⊗ x) = ηH̃F

◦ ϵH̃F
(ℓ⊗ x) = (µH̃F

◦ (idH̃F
⊗ SH̃F

))∆F (ℓ⊗ x).
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We will give a diagrammatic proof. Note, the twisted coproduct ∆F is given by

∆F =
S

∈ L(H̃F , H̃F ).

So, we have

SH̃F
∗ idH̃F

= S S

S

S

=

S S
2

S

S S

=

S

S S

=

S

S

= .

The other relation can be proved in a similar way. □

10.1.3. Quantum double. In this subsection, we will see that the Hopf algebra H̃F is actually a
cobraided Hopf algebra (or equivalently, that its dual Hopf algebra is a braided Hopf algebra).

Definition 36 (Quantum double). Let H be a finite dimensional Hopf algebra with invertible
antipode S. The quantum double D(H) = H ⊗H∗,cop of a Hopf algebra H is the dual Hopf

algebra of H̃F constructed in Theorem 14.

Theorem 15. The quantum double D(H) has the following properties:
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(1) As a coalgebra, it is the tensor product of coalgebras H and H∗,cop.
(2) Via the natural inclusions

H → D(H)

x 7→ x⊗ 1

and

H∗,cop → D(H)

ℓ 7→ 1⊗ ℓ,

H and H∗,cop become Hopf subalgebras of D(H).
(3) For all x ∈ H and ℓ ∈ H∗, we have

(x⊗ 1)(1⊗ ℓ) = x⊗ ℓ

and

(1⊗ ℓ)(x⊗ 1) =
∑
(x),(ℓ)

⟨ℓ(1), S−1x(1)⟩⟨ℓ(3), a(3)⟩a(2) ⊗ ℓ(2),

i.e.

µD(H) =
S

∈ L(D(H)⊗D(H), D(H)).

Proof. (1) Obvious.
(2) We just need to check that these inclusions are algebra maps. We leave this as an

exercise.
(3) This follows from the definition of the twisted coproduct ∆F . We leave this as an

exercise as well.
□

Theorem 16. Let R ∈ D(H)⊗D(H) be the canonical element

R =
∑
i∈I

(ei ⊗ 1)⊗ (1⊗ ei) ∈ D(H)⊗D(H),

i.e.

R = .

Then, R is a universal R-matrix for D(H), with inverse

R−1 =
∑
i∈I

(Sei ⊗ 1)⊗ (1⊗ ei).
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10.1.4. Quantum doubles for infinite dimensional Hopf algebras. The quantum double con-
struction can be stated more generally for infinite dimensional Hopf algebras as well, by using
the restricted dual. In this setup, we get a bialgebra D(H) whose restricted dual D(H)o is
cobraided:

Theorem 17 (Quantum double, more general setting). Let H be a Hopf algebra with invertible
antipode S. Let D(H) be the bialgebra H ⊗Ho,cop twisted by the cocycle

νH = ϵH ⊗ evH(idHo ⊗ S−1)⊗ ϵHo = S .

Then it is a Hopf algebra containing H and Ho,cop as Hopf subalgebras through the following
canonical bialgebra embeddings:

ι : H ↪→ D(H)

x 7→ x⊗ 1Ho

ȷ : Ho,cop ↪→ D(H)

ℓ 7→ 1H ⊗ ℓ.

Moreover, D(H)o is cobraided with the dual universal R-matrix

ρ := evD(H)((ȷ ι
o)⊗ idD(H)o) ∈ (D(H)o ⊗D(H)o)∗.

Remark 12. While we have been using H ⊗Ho,cop following [KRT97], in some literature
(e.g. [Kas23]), the quantum double D(H) is defined as a bialgebra H ⊗Ho,op, twisted by the
cocycle ϵH ⊗ evH ⊗ ϵHo :

.

Then, D(H)o is cobraided with the dual universal R-matrix

ρ := evD(H)(idD(H)o ⊗ (ȷ ιo)) ∈ (D(H)o ⊗D(H)o)∗.

This is of course a different definition, but at least for finite dimensional Hopf algebras, the
two conventions are related by

H ↔ H∗,op

H∗,cop ↔ H.

One advantage of the latter convention is that, even if the antipode S of H is not invertible,
we still get a bialgebra D(H) whose restricted dual D(H)o is cobraided. If S is invertible,
then D(H) is a Hopf algebra.

Remark 13. When H is finite dimensional, that D(H)∗ is cobraided just means that D(H)
has a universal R-matrix. More explicitly, if {ei}i∈I is a linear basis of H and {ei}i∈I is a
dual basis of H∗, then the dual universal R-matrix ρ ∈ (D(H)o ⊗D(H)o)∗ is conjugate to
the universal R-matrix

R :=
∑
i∈I

ιei ⊗ ȷei ∈ D(H)⊗D(H)
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in the sense that, for any x, y ∈ D(H)o = D(H)∗,

⟨x⊗ y,R⟩ =
∑
i∈I

⟨x, ιei⟩⟨y, ȷei⟩ =
∑
i∈I

⟨ιox, ei⟩⟨y, ȷei⟩

=

〈
y, ȷ

(∑
i∈I

⟨ιox, ei⟩ei
)〉

= ⟨y, ȷιox⟩ = ⟨ρ, x⊗ y⟩.

However, when H is infinite dimensional, the expression of R above is only formal; the
universal R-matrix lives in some completion of D(H) ⊗ D(H). In view of the algebra
homomorphism

D(H)⊗D(H) → (D(H)o ⊗D(H)o)∗,

we can think of (D(H)o ⊗D(H)o)∗ as a certain algebra completion of D(H)⊗D(H).

11. Lecture 11 (Tue Feb 27, 2024)

11.1. Quantum double (cont.)

Proof of Theorem 16. The only non-trivial thing to prove is condition (1) – that R∆(h) =
∆op(h)R for all h ∈ D(H). Since the subspace

{h ∈ D(H) | R∆(h) = ∆op(h)R}
is a subalgebra of D(H), we just need to check this relation for h = x⊗ 1 with x ∈ H and
h = 1⊗ ℓ with ℓ ∈ H∗.
The following lemma, whose proof is an easy exercise, will be useful:

Lemma 3. Let H be a Hopf algebra and R =
∑

i αi ⊗ βi ∈ H ⊗H be an invertible element.
Then, the followings are equivalent:

(i) R∆(h) = ∆op(h)R, for all h ∈ H.
(ii) R(h⊗ 1) =

∑
(h) h(2)αi ⊗ h(1)βiSh(3), for all h ∈ H.

(iii) (h⊗ 1)R =
∑

(h) αih(2) ⊗ Sh(1)βih(3), for all h ∈ H.

(iv) R(1⊗ h) =
∑

(h) h(3)αiS
−1h(1) ⊗ h(2)βi, for all h ∈ H.

(v) (1⊗ h)R =
∑

(h) S
−1h(3)αih(1) ⊗ βih(2), for all h ∈ H.

Now, let’s check the condition (iv) for elements x⊗ 1 and condition (iii) for elements 1⊗ ℓ.
The LHS of (iv) with h = x⊗ 1 is equal to

R((1⊗ 1)⊗ (x⊗ 1)) =
∑
i∈I

(ei ⊗ 1)⊗
(
(1⊗ ei)(x⊗ 1)

)
=
∑
i∈I

(x)(ei)

(ei ⊗ 1)⊗ (x(2) ⊗ ei(2))⟨ei(1), S−1x(1)⟩⟨ei(3), x(3)⟩,

while the RHS is equal to∑
j∈I
(x)

(
(x(3)ejS

−1x(1))⊗ 1
)
⊗ (x(2) ⊗ ej)

=
∑
i,j∈I
(x)

(ei ⊗ 1)⊗ (x(2) ⊗ ej)⟨ei, x(3)ejS
−1x(1)⟩
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=
∑
i,j∈I
(x)(ei)

(ei ⊗ 1)⊗ (x(2) ⊗ ej)⟨ei(1), S−1x(1)⟩⟨ei(2)ej⟩⟨ei(3), x(3)⟩

=
∑
i∈I

(x)(ei)

(ei ⊗ 1)⊗ (x(2) ⊗ ei(2))⟨ei(1), S−1x(1)⟩⟨ei(3), x(3)⟩,

i.e.

LHS =
S

=

S

= RHS.

Likewise, the LHS of (iii) with h = 1⊗ ℓ is equal to

((1⊗ ℓ)⊗ (1⊗ 1))R =
∑
i∈I

((1⊗ ℓ)(ei ⊗ 1))⊗ (1⊗ ei)

=
∑
i∈I

(ei)(ℓ)

⟨ℓ(1), S−1ei(1)⟩⟨ℓ(3), ei(3)⟩(ei(2) ⊗ ℓ(2))⊗ (1⊗ ei),

while the RHS is equal to∑
j∈I
(ℓ)

(ej ⊗ ℓ(2))⊗ (1⊗ S−1ℓ(1)e
jℓ(3))

=
∑
i,j∈I
(ℓ)

⟨S−1ℓ(1)ejℓ(3), ei⟩(ej ⊗ ℓ(2))⊗ (1⊗ ei)

=
∑
i,j∈I
(ℓ)

⟨S−1ℓ(1), ei(1)⟩⟨ej, ei(2)⟩⟨ℓ(3), ei(3)⟩(ej ⊗ ℓ(2))⊗ (1⊗ ei)

=
∑
i∈I

(ei)(ℓ)

⟨ℓ(1), S−1ei(1)⟩⟨ℓ(3), ei(3)⟩(ei(2) ⊗ ℓ(2))⊗ (1⊗ ei),

i.e.

LHS =
S

=

S

= RHS.

□

Therefore, D(H) is braided. In fact, we could have characterized D(H) from the property
that the canonical element R is a universal R-matrix for D(H):

Proposition 25. The algebra structure in D(H) is the only Hopf algebra structure on the
coalgebra H ⊗H∗,cop such that

(1) H and H∗,cop are Hopf subalgebras,
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(2) the multiplication map

H ⊗H∗,cop → D(H)

x⊗ ℓ 7→ x · ℓ
is an isomorphism of vector spaces,

(3) and R =
∑

i∈I ei ⊗ ei ∈ D(H)⊗D(H) is a universal R-matrix.

Proof. The only structure to be determined is products of the form ℓ · x with ℓ ∈ H∗,cop and
x ∈ H. Suppose that R =

∑
i∈I ei ⊗ ei is a universal R-matrix for D(H). Then, it should

satisfy the Yang-Baxter relation (Proposition 19)

R12R13R23 = R23R13R12.

That is, ∑
i,j,k∈I

eiej ⊗ eiek ⊗ ejek =
∑

i,j,k∈I

ejei ⊗ eke
i ⊗ ekej.

Note that the LHS contains products of the form eiek. We can thus view the above as a
system of linear equations in the unknowns eiek.
We claim that the vectors vik :=

∑
j eiej ⊗ ejek form a basis of H ⊗H∗. Then it would

immediately follow that the products eiek are uniquely determined by the Yang-Baxter
equation. For this, note that

vik = (ei ⊗ ek)(
∑
j

ej ⊗ ej) = (ei ⊗ ek)R

in Hcop ⊗ (Hcop)∗. Therefore, it suffices to show that R is invertible in Hcop ⊗ (Hcop)∗. This
follows from

R (idH ⊗ S−1)(R) = 1 = (idH ⊗ S−1)(R)R.

□

Example 12. Let G be a finite group and let H = C[G] be the group algebra. Then
H∗,cop = (CG)cop is the commutative algebra of functions on G with coproduct given by

∆(f)(x⊗ y) = f(yx).

The quantum double is the Hopf algebraD(H) = C[G]⊗(CG)cop, with the product determined
by the relation

f(x) · g =
∑
(g),(f)

f(1)(S
−1g(1))f(3)(g(3)) g(2) · f(2)(x)

=
∑
(f)

f(1)(g
−1)f(3)(g) g · f(2)(x)

= g ·∆(2)(f)(g−1 ⊗ x⊗ g)

= g · f(gxg−1).

That is, as an algebra, D(H) is the semidirect product C[G]⋉ (CG)cop.
The universal R-matrix is given by

R =
∑
x∈G

x⊗ δx,
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with inverse

R−1 =
∑
x∈G

x−1 ⊗ δx.

We can easily double check that it intertwines the coproduct:

R∆(gδh) =

(∑
x∈G

x⊗ δx

)(∑
y∈G

gδy ⊗ gδhy−1

)
=
∑
x,y∈G

xgδy ⊗ δxgδhy−1

=
∑
x,y∈G

xgδy ⊗ gδg−1xgδhy−1

=
∑

x′,y∈G

gx′δy ⊗ gδx′δhy−1

=
∑

x′,y∈G

gδx′yx′−1x′ ⊗ gδx′δhy−1

=
∑

x′,y∈G

gδhyh−1x′ ⊗ gδx′δhy−1

=
∑

x′,y′∈G

gδhy′−1x′ ⊗ gδx′δy′

=

(∑
y′∈G

gδhy′−1 ⊗ gδy′

)(∑
x′∈G

x′ ⊗ δx′

)
= ∆op(gδh)R

The braided Hopf algebra D(H) is in fact ribbon, with a ribbon element given by

u =
∑
x∈G

x−1δx,

with inverse

θ = u−1 =
∑
x∈G

xδx.

We leave it as an exercise to check that this is indeed a ribbon element.

Remark 14. The construction of quantum double presented here was purely formal and may
seem complicated and unmotivated. However, there is a much nicer way to think about it, in
terms of line operators in the bulk of a 3d TQFT and on two transverse boundary theories.
This involves extended TQFTs, so I wouldn’t have time to cover this in this course, but I
highly recommend checking out Tudor Dimofte’s talk at Perimeter Institute, titled “Spark
algebras and quantum groups”.

11.2. Quantum groups. We follow [KRT97, Ch. 4].

11.2.1. Hopf pairing and generalized double.

https://pirsa.org/23120034
https://pirsa.org/23120034
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Definition 37. Let A and B be Hopf algebras over k with invertible antipodes. A Hopf
pairing between A and B is a bilinear form φ : A⊗B → k such that

φ(a, bb′) =
∑
(a)

φ(a(1), b)φ(a(2), b
′),

φ(aa′, a) =
∑
(b)

φ(a, b(2))φ(a
′, b(1)),

φ(a, 1B) = ϵA(a) and φ(1A, b) = ϵB(b),

φ(Sa, b) = φ(a, S−1b)

for all a, a′ ∈ A and b, b′ ∈ B.
In other words, if we draw A as solid lines and B as dashed lines,

= , = ,

etc.

Example 13. For any Hopf algebra H, the natural evaluation map

evH : H ⊗Ho,cop → k

is a Hopf pairing.

Theorem 18. Given a Hopf pairing φ : A⊗B → k, there is a unique Hopf algebra structure
on A ⊗ B satisfying conditions in Theorem 15, with H and H∗,cop replaced by A and B,
respectively.

The proof is exactly the same as before. The resulting Hopf algebra is denoted by Dφ(A,B)
and is called the generalized double of A with respect to B and φ.

Remark 15. While Dφ(A,B) is a Hopf algebra, it doesn’t have to be braided. If A and B
are finite dimensional Hopf algebras and the pairing φ is non-degenerate, then by the same
construction as before, Dφ(A,B) becomes a braided Hopf algebra. If φ is degenerate, then
we can quotient A and B out by the annihilator ideals

IA := {a ∈ A | φ(a, b) = 0 for all b ∈ B},
IB := {b ∈ B | φ(a, b) = 0 for all a ∈ A}

to get a non-degenerate Hopf pairing

φ : A/IA ⊗B/IB → k,

which gives rise to a braided Hopf algebra Dφ(A/IA, B/IB).

The following lemma will be useful later:

Lemma 4. Let Ã and B̃ be free algebras generated by elements a1, · · · , am and b1, · · · , bn,
respectively. Let {λij}1≤i≤m

1≤j≤n
be mn scalars. Then, there is a unique Hopf pairing φ : Ã⊗B̃ → k

such that φ(ai, bj) = λij.

Moreover, if A (resp. B) is a quotient of Ã (resp. B̃) by the ideal generated by elements

r1, · · · , rk (resp. s1, · · · , sl), then the Hopf pairing φ : Ã⊗ B̃ → k descends to a Hopf pairing
φ : A⊗B → k if and only if φ(ri, bj) = 0 for all 1 ≤ i ≤ k, 1 ≤ j ≤ n and φ(ai, sj) = 0 for
all 1 ≤ i ≤ m, 1 ≤ j ≤ l.
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11.2.2. Brief review of U(slN+1). Let slN+1 be the Lie algebra of traceless complex (N +1)×
(N + 1) matrices. Let ei,j be the elementary matrix whose entries are all 0 except for the
(i, j)-entry which is 1. Then,

{ei,j | 1 ≤ i, j ≤ N + 1, i ̸= j} ∪ {ei,i − ei+1,i+1 | 1 ≤ i ≤ N}
form a basis of slN+1. For 1 ≤ i ≤ N , let

Ei := ei,i+1, Fi := ei+1,i, Hi := ei,i − ei+1,i+1.

The Cartan subalgebra h of slN+1 is the Lie subalgebra generated by traceless diagonal
matrices H1, · · · , HN . Let ϵ be a linear form on the space of diagonal matrices defined by

ϵi(ej,j) = δi,j.

Then, the simple roots,
{αi = ϵi − ϵi+1}1≤i≤N ,

forms a basis of h∗. The matrix

(αj(Hi)) =


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2


is called the Cartan matrix of slN+1.
The Ei, Fi, Hi (1 ≤ i ≤ N) generate the Lie algebra slN+1 (and its universal enveloping

algebra U(slN+1)) subject to relations

[Hi, Hj] = 0, [Hi, Ej] = αj(Hi)Ej, [Hi, Fj] = −αj(Hi)Fj, [Ei, Fj] = δijHi, 1 ≤ i, j ≤ N

[Ei, Ej] = 0, [Fi, Fj] = 0, if |i− j| ≥ 2,

[Ei, [Ei, Ej]] = 0, [Fi, [Fi, Fj]] = 0, if |i− j| = 1.

The adjoint action of h makes U(slN+1) into a Q-graded algebra, where Q is the root lattice
(i.e. the free abelian group with basis α1, · · · , αN ). The degree of the generators are given by

degEi = αi, degFi = −αi, degHi = 0.

12. Lecture 12 (Thu Feb 29, 2024)

12.1. Quantum groups (cont.)

12.1.1. Quantized enveloping algebras Uq(slN+1). Let Ũ+ be the C(q)-algebra generated by
Ei, K

±1
i (1 ≤ i ≤ N), subject to the relations

KiK
−1
i = K−1i Ki = 1, KiKj = KjKi, KiEj = qαj(Hi)EjKi.

Simiarly, let Ũ− be the C(q)-algebra generated by Fi, K
′±1
i (1 ≤ i ≤ N), subject to the

relations
K ′iK

′−1
i = K ′

−1
i K ′i = 1, K ′iK

′
j = K ′jK

′
i, K ′iFj = q−αj(Hi)FjK

′
i.

The algebras Ũ+ and Ũ− have Hopf algebra structures given by

∆Ki = Ki ⊗Ki, ∆Ei = Ei ⊗ 1 +Ki ⊗ Ei,

∆K ′i = K ′i ⊗K ′i, ∆Fi = Fi ⊗K ′
−1
i + 1⊗ Fi.
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They are Q-graded, with

degEi = αi, degFi = −αi, degKi = degK ′i = 0.

The following theorem follows from Lemma 4:

Theorem 19. There exists a unique Hopf pairing

φ : Ũ+ × Ũ− → C(q)
such that

φ(Ei, Fj) = − δij
q − q−1

,

φ(Ei, K
′
j) = φ(Ki, Fj) = 0,

φ(Ki, K
′
j) = q−αi(Hj) = q−αj(Hi).

The resulting Hopf algebra D(Ũ+) := Dφ(Ũ+, Ũ−) is Q-graded.

Proposition 26. In D(Ũ+), we have

KiK
′
j = K ′jKi, K ′iEj = qαj(Hi)EjK

′
i, KiFj = q−αj(Hi)FjKi, [Ei, Fj] = δij

Ki −K−1i

q − q−1
.

Lemma 5. The annihilator ideal I+ := IŨ+
of Ũ+ is generated by the elements

EiEj − EjEi, |i− j| ≥ 2,

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i , |i− j| = 1.

Likewise, the annihilator ideal I− := IŨ−
of Ũ− is generated by the same elements with Ei

replaced by Fi.

Let U+ := Ũ+/I+ and U− := Ũ−/I−. Then, φ induces a nondegenerate Hopf pairing
between them, producing a Hopf algebra D(U+) := Dφ(U+, U−).

Definition 38. The Hopf algebra Uq(slN+1) is the quotient of D(U+) by the two-sided ideal
generated by Ki −K ′i, 1 ≤ i ≤ N .

That is, as an algebra, it is the C(q)-algebra generated by Ei, Fi, K
±1
i (1 ≤ i ≤ N) subject

to relations

KiK
−1
i = K−1i Ki = 1,

[Ki, Kj] = 0, KiEj = qαj(Hi)EjKi, KiFj = q−αj(Hi)FjKi, [Ei, Fj] = δij
Ki −K−1i

q − q−1
, 1 ≤ i, j ≤ N

[Ei, Ej] = 0, [Fi, Fj] = 0, if |i− j| ≥ 2,

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0, F 2

i Fj − (q + q−1)FiFjFi + FjF
2
i = 0, if |i− j| = 1.

The universal R-matrix for Uq(slN+1) can be found e.g. in [Bur90]. Since Uq(slN+1) is
infinite dimensional, the universal R-matrix is only formal, but it gives rise to an actual
braiding for any finite dimensional representation of Uq(slN+1).

Example 14. Uq(sl2) is the C(q)-algebra generated by E,F,K±1 subject to relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, [E,F ] =
K −K−1

q − q−1
.



LECTURES ON QUANTUM TOPOLOGY 55

It has the structure of a Hopf algebra given by2

∆(K) = K ⊗K, ∆(E) = E ⊗K + 1⊗ E, ∆(F ) = F ⊗ 1 +K−1 ⊗ F,

ϵ(K) = 1, ϵ(E) = 0, ϵ(F ) = 0,

S(K) = K−1, S(E) = −EK−1, S(F ) = −KF.

It has a universal R-matrix

R = q
1
2
H⊗H

∑
n≥0

q
n(n−1)

2
(q − q−1)n

[n]!
(En ⊗ F n)

and a ribbon element

θ = K−1
∑

S(R(2))R(1),

where R =
∑

R(1) ⊗R(2).

12.1.2. Specializations. Let A = C[q, q−1] ⊂ C(q). Let UA be the Hopf A-subalgebra of
Uq(slN+1) generated by the elements

Ei, Fi, K
±1
i , [Ki; 0], 1 ≤ i ≤ N,

where

[Ki; 0] :=
Ki −K−1i

q − q−1
.

For ϵ ∈ C∗, the specialization Uϵ := UA/(q − ϵ)UA is a Hopf algebra over C.

Proposition 27. The algebra U1 is generated by Ei, Fi, Ki, Hi (1 ≤ i ≤ N), subject to the
condition that all elements Ki are central and

[Hi, Ej] = αj(Hi)KiEj, [Hi, Fj] = −αj(Hi)KiFj,

[Ei, Fj] = δijHi, K2
i = 1,

[Ei, Ej] = 0, [Fi, Fj] = 0, if |i− j| ≥ 2,

[Ei, [Ei, Ej]] = 0, [Fi, [Fi, Fj]] = 0, if |i− j| = 1.

In particular, U1/⟨Ki − 1 | 1 ≤ i ≤ N⟩ is isomorphic to U(slN+1).

Let ϵ ∈ C∗ be such that ϵ ̸= 1. Then the presentation of Uϵ by generators and relations
can be obtained from that of Uq(slN+1) by putting q = ϵ. When ϵ is not a root of unity, then
the Hopf pairing is still non-degenerate.

However, when ϵ is a primitive ℓ-th root of unity, then Eℓ
α, F

ℓ
α, K

ℓ
i − 1 (α ∈ Φ+, 1 ≤ i ≤ N)

are in the kernel of the Hopf pairing and are in fact in the center of Uϵ. Let uϵ (the small
quantum group) be the quotient of Uϵ by the two-sided ideal generated by those elements.
Then, uϵ is a finite dimensional Hopf algebra.

Theorem 20. If ℓ is odd and prime to N + 1, then uϵ is braided; see e.g. [KRT97, Theorem
4.4] for the formula for the universal R-matrix.

2We are following the convention of [Hab02], which is slightly different from that of [KRT97] which we
have been using above; their coproducts are opposite to each other (and hence their antipodes are inverses of
each other).
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12.2. Modular categories. So far, we have been studying braided and ribbon categories
and how to construct link invariants out of them. When it comes to 3-manifold invariants,
it turns out that the appropriate categorical notion we want is that of a modular tensor
category.

In this section, we mostly follow [Tur94, Ch. 2]; see also [BK01, Ch. 3].

Definition 39. A category is said to be an Ab-category if for any pair of its objects V,W ,
the set of morphisms V → W is an additive abelian group and the compositions are bilinear.

For monoidal Ab-categories, we also assume that the tensor product of morphism is bilinear.

Let V be a monoidal Ab-category. Then, R = RV := End(1) is a commutative ring with
unit id1 and is called the ground ring of V . The abelian groups Hom(V,W ) acquire the left
R-module structure by kf = k ⊗ f where k ∈ R and f ∈ Hom(V,W ). The composition of
morphisms is R-bilinear.

Definition 40. Let V be a ribbon Ab-category. An object V of V is said to be simple if

R → End(V )

r 7→ r ⊗ idV

is a bijection. That is, if End(V ) is a free R-module of rank 1, generated by idV .

For example, the tensor unit 1 is simple. An object isomorphic to or dual to a simple
object is also simple.

Definition 41. Let {Vi}i∈I be a family of objects in a ribbon Ab-category V . We say that
an object V of V is dominated by the family {Vi}i∈I if there exists a finite set {Vi(r)}r of
objects of this family (possibly with repetition) and a family of morphisms

{fr : Vi(r) → V, gr : V → Vi(r)}
such that

idV =
∑
r

frgr.

In other words, V is dominated by {Vi(r)}r if the image of the pairings

{(g, f) 7→ fg : Hom(V, Vi)⊗R Hom(Vi, V ) → End(V )}i∈I
additively generate End(V ).

For example, if the category V admits direct sums, then V is dominated by {Vi(r)}r if and
only if, for some object W of V, the direct sum V ⊗ W splits as a direct sum of a finite
number of objects from this family.

Set Si,j := Tr
(
βVj ,Vi

◦ βVi,Vj

)
∈ R for each i, j ∈ I. That is, it is the invariant associated to

the Hopf link colored by Vi and Vj:

Vj Vi .
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This is a symmetric I × I matrix. Note, S0,i = Si,0 = dim(Vi).

Definition 42. A modular category is a pair (V , {Vi}i∈I) consisting of a ribbon Ab-category
V and a finite family of simple objects {Vi}i∈I of V satisfying the following properties:

(1) (Normalization). There exists 0 ∈ I such that V0 = 1.
(2) (Duality). For any i ∈ I, there is i∗ ∈ I such that the object Vi∗ is isomorphic to (Vi)

∗.
(3) (Domination). All objects of V are dominated by the family {Vi}i∈I .
(4) (Non-degeneracy). The square matrix S = (Si,j)i,j∈I is invertible over R; that is,

det(S) is invertible in R.

It is easy to see that Sij is divisible by both dim(Vi) and dim(Vj). Non-degeneracy axiom
implies that dim(Vi) is invertible in R. Non-degeneracy axiom also implies that the objects
Vi, Vj with distinct i, j are not isomorphic.

A modular category is called strict if the underlying monoidal category is strict. MacLane’s
coherence theorem works in the setting of modular cagtegory as well, so we may (and will)
restrict our attention to strict modular categories.

Lemma 6 (Schur lemma). Let (V , {Vi}i∈I) be a modular category. Then, for any distinct
i, j ∈ I, we have Hom(Vi, Vj) = 0.

Proof. Firstly, note that, by simiplicity of the objects Vi’s, the colored ribbon graph

Vi

Vk

must evaluate to some constant times idVi
. By taking the trace, it is easy to see that this

constant must be
Sik

dim(Vi)
=

Sik

Si0

.

Let f ∈ Hom(Vi, Vj). The following two colored ribbon graphs are isotopic:

f

Vi

Vj

Vk

≃ f

Vi

Vj

Vk

,

so they must evaluate to the same morphism. The left picture evaluates to Sik

Si0
f and the right

picture evaluates to
Sjk

Sj0
f . Therefore, we should have(

Sik

Si0

− Sjk

Sj0

)
f = 0,
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for all k ∈ I. By multiplying (S−1)ki to the right and summing over k ∈ I, we get(
1

Si0

− δij
Sj0

)
f = 0.

In particular, if i ̸= j, then f must be 0. □

13. Lecture 13 (Tue Mar 5, 2024)

13.1. Witten-Reshetikhin-Turaev invariants.

13.1.1. Lightening review of 3d Kirby calculus. Let L ⊂ S3 be a framed link. A Dehn surgery
along L is a process of gluing solid tori to the boundary of the link complement in the
following way. For each component Li of L, let µi and λi be the meridian and longitude on
the torus boundary of a tubular neighborhood of Li. Note, µi is independent of the framing
of Li while λi is dependent on the framing. We glue the boundary of a solid torus along the
torus boundary in such a way that it kills the homology cycle represented by the longitude
λi. In the end, we get a closed oriented 3-manifold YL = S3(L).

Equivalently, one can glue 2-handles on B4 along Li’s, with appropriate framing. Let’s call
the resulting 4-manifold WL. The Dehn-surgered 3-manifold S3(L) is ∂WL.

The signature of WL (i.e. the signature of the intersection form on H2(WL;R)) is denoted
by σ(L). Equivalently, it is the signature of the linking matrix of L.

Theorem 21 (Lickorish–Wallace). Every connected closed oriented 3-manifold can be obtained
from S3 by performing a Dehn surgery along some framed link L ⊂ S3.

Theorem 22 (Kirby, Fenn-Rourke). If two framed links L1, L2 ⊂ S3 give rise to the same
3-manifold via Dehn surgery, then they are related by a finite sequence of the following moves:

· · ·

· · ·

±1 ↔

· · ·

· · ·

∓1-full twist .

This move is called the Fenn-Rourke move, which simplifies Kirby’s original formulation,
which involves two kinds of moves – “blow-ups” and “handle slides”. We will simply call a
Fenn-Rourke move involving a ±1-framed unknot component a ±1-move. A −1-move with
no other strands linked to the −1-framed unknot will be called a special −1-move. It is
known that we may restrict to +1-moves and special −1-moves.
Therefore, in order to create an invariant of closed oriented 3-manifolds, it suffices to

produce an invariant of framed links which is invariant under +1-moves and special −1-moves.

13.1.2. WRT invariants. Let (V , {Vi}i∈I) be a modular category with ground ring R.
Given a framed oriented link L ⊂ S3 with m components, let col(L) be the set of functions

from the set of components of L to I. For each c ∈ col(L), let Lc be the corresponding colored
link. Define

⟨L⟩ :=
∑

c∈col(L)

dim(c)F (Lc) ∈ R,

where
dim(c) :=

∏
1≤n≤m

dim(Vc(Ln)),



LECTURES ON QUANTUM TOPOLOGY 59

and F is the Reshetikhin-Turaev functor (Theorem 9). More generally, given a V-colored
framed oriented link K in the complement of L, define

⟨L,K⟩ :=
∑

c∈col(L)

dim(c)F (Lc ∪K) ∈ R.

Lemma 7. ⟨L⟩ and ⟨L,K⟩ does not depend on the orientation of L.

Proof. This is easy to see from the duality axiom of a modular category. □

As we will see, ⟨L,K⟩ almost defines an invariant of the pair (YL, K), in a sense that,
under the Fenn-Rourke move, it only gets multiplied by a simple factor. To describe this
simple factor, we need two elements ∆ and D of R:

Definition 43. Set

∆ := ⟨O−1⟩ =
∑
i∈I

v−1i (dim(Vi))
2 ∈ R,

where O−1 denotes the −1-framed unknot, and vi ∈ R is the invertible element determined
by θVi

= vi idVi
.

Definition 44. A rank of V is an element D ∈ R such that

D2 = ⟨O0⟩ =
∑
i∈I

(dim(Vi))
2,

where O0 denotes the 0-framed unknot.

Note, a rank may not exists and even if it exists, it may not be unique. If it doesn’t
exist, we may always formally add such an element to R by extending the ground ring to

R̃ := R[x]/(x2 −
∑

i∈I(dim(Vi))
2).

Lemma 8. ∆ and any rank D of V are invertible in R.

We will prove this lemma in the proof of the following theorem, which is the main theorem
of this section:

Theorem 23. Let (V , {Vi}i∈I) be a modular category with a rank D ∈ R. Let Y be a
3-manifold obtained as a surgery on a framed link L ⊂ S3 with m components. Then

τ(Y ) := ∆σ(L)D−σ(L)−m−1⟨L⟩ ∈ R

is a topological invariant of Y .
More generally, if K is a V-colored framed oriented link in Y , represented by a colored

framed oriented link K ⊂ S3 \ L, then

τ(Y,K) := ∆σ(L)D−σ(L)−m−1⟨L,K⟩ ∈ R

is a topological invariant of the pair (Y,K).

This invariant is called the Witten-Reshetikhin-Turaev (WRT) invariant.

Example 15. Here are some simple example computations:

• Taking L = ∅, we get τ(S3) = D−1. More generally, τ(S3, K) = D−1F (K).
• Taking L = O0, we get τ(S1 × S2) = 1.
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• Taking L = On, we get

τ(L(n, 1)) = ∆sgn(n)D−sgn(n)−2
∑
i∈I

vni (dim(Vi))
2.

Note, by setting n = 1, in which case we should get S3, we get the following identity:

D−1 = ⟨O−1⟩D−3⟨O1⟩,

or in other words,

⟨O0⟩ = ⟨O1⟩⟨O−1⟩.

• If L1 and L2 are unlinked, then YL1∪L2 = YL1#YL2 . It follows that

τ(YL1#YL2) = Dτ(YL1)τ(YL2) =
τ(YL1)τ(YL2)

τ(S3)
.

Remark 16. The productDb1(M)+1τ(Y,K) involves only even power ofD, so it is independent
of the choice of D. One can get rid of the dependence of D in this way if one wishes, but the
normalization used above is a more natural one, from the 3d TQFT point of view.

Proof of Theorem 23. We reduce the theorem into Lemma 9 and Lemma 10.

Lemma 9. Let {di}i∈I ∈ RI be the unique solution to the following system of equations:∑
i∈I

divivjSi,j = dim(Vj).

Set

⟨L,K⟩′ :=
∑

c∈col(L)

∏
1≤n≤m

dc(Ln)F (Lc ∪K) ∈ R.

Then, the element ⟨L,K⟩′ ∈ R does not depend on the choice of orientation of L, and this
element is invariant under +1-moves on (L,K).

Proof of Lemma 9. It is easy to see that Sij = Si∗j∗ and vi∗ = vi. It follows that di = di∗ .
This implies that ⟨L,K⟩′ ∈ R is independent of the choice of orientation of L.

For invariance of ⟨L,K⟩′ under +1 moves, we observe that, by the definition of di’s,

∑
i∈I

di θθ
i

j

=
∑
i∈I

divivj
Sij

dim(Vj)
· idVj

= idVj

We need to show the same for arbitrary number of strands linking the unknot component.
The case with 0 strand follows from the same identity, specialized to j = 0. In case of one or
more strands, using the axiom of domination, we can decompose the identity morphism on
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any object W of V into morphisms that factor through Vi’s:

∑
i∈I

di θ+1 twist

i
· · ·

· · ·

=
∑
r

∑
i∈I

di θθ

gr

fr

i
j(r)

· · ·

· · ·

=
∑
r

g

f

j(r)

· · ·

· · ·

=

· · ·

· · ·

.

□

To get a topological invariant of 3-manifolds, it only remains to check how ⟨L,K⟩′ behave
under the special −1-move. Under the special −1-move, we have

⟨L−1, K⟩′ = ⟨L,K⟩′
∑
i∈I

div
−1
i dim(Vi).

Therefore, if
∑

i∈I div
−1
i dim(Vi) ∈ R is invertible, then we will be able to make this a

topological invariant, by multiplying an appropriate power of this number.

14. Lecture 14 (Thu Mar 7, 2024)

14.1. Witten-Reshetikhin-Turaev invariants (cont.)

Proof of Theorem 23 (cont.)

Lemma 10. Set
x := ⟨O0⟩′ =

∑
i∈I

di dim(Vi) ∈ R.

(1) For any i ∈ I, we have ∑
j∈I

djSj,i = xδi,0.

(2) For any i, j ∈ I, we have∑
k∈I

dk
dim(Vk)

Si,kSk,j = xδi∗j.

(3) For any i ∈ I, we have ∑
j∈I

djv
−1
j v−1i Sji = xdi.

(4) For any i ∈ I, we have
di = d0 dim(Vi).

Here are some immediate consequences:

• The first identity (1) implies that x is a common divisor of {di}i∈I , but from the
definition of di’s, it should be invertible.

• The second identity (2) implies that the matrix

{x−1 diSi,j∗

dim(Vi)
}i,j∈I

is the inverse of S. It also follows that all di’s are invertible in R.
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• The third identity (3) implies that∑
i∈I

div
−1
i dim(Vi) = xd0,

which the factor we obtain under the special −1-move, and we have just seen that
this is invertible in R.

To this end, define
τ ′(YL, K) := (xd0)

−σ−(L)⟨L,K⟩′,
where σ−(L) =

m−dimH1(Y ;R)−σ(L)
2

denotes the number of negative eigenvalues of the inter-
section form of WL. It is easy to see that any +1-move preserves σ−(L), and any special
−1-move adding a −1-framed unknot component increases σ−(L) by 1. Therefore, Lemma 9
and (1), (2), (3) of Lemma 10 implies that τ ′ is a topological invariant.

It remains to relate τ ′ with τ .

• Plugging the identity (4) into
∑

i∈I div
−1
i dim(Vi) = xd0, we get

x =
∑
i∈I

v−1i (dim(Vi))
2 =: ∆.

Therefore ∆ is invertible.
• Moreover,

∆ = x :=
∑
i∈I

di dim(Vi) = d0
∑
i∈I

(dim(Vi))
2 = d0D

2.

Therefore, D is invertible with D−1 = d0D∆−1.

That is, Lemma 10 imply Lemma 8.
Finally, replacing di = d0 dim(Vi), x = ∆ and d0 = ∆D−2 in the definition of τ ′, we get

τ ′(Y,K) = ∆b1(Y )D−b1(Y )+1τ(Y,K).

Hence, topological invariance of τ ′ implies that of τ . □

Proof of Lemma 10. Proof of (1): We have3

∑
i∈I

diSi,j
Sk,j

dim(Vj)2
idVj

=

〈 k

j

〉′

a sequence of +1 moves
=============
See Fig. 3.6 in Turaev

〈
k

j

〉′
=

∑
i∈I

diSi,j
dim(Vk)

dim(Vj)
idVj

,

which implies (∑
i∈I

diSi,j

)
=

(∑
i∈I

diSi,j

)
Sk,j

dim(Vj) dim(Vk)
.

3See Fig. 3.6 in [Tur94] for the sequence of +1 moves realizing the handle slide along the blue 0-framed
unknot. This is the most technical part of the proof.
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Nondegeneracy of S and invertibility of Vj, Vk implies that the matrix

S ′ :=

(
Sj,k

dim(Vj) dim(Vk)

)
j,k

is nondegenerate. Note, S ′0,k = 1 for all k ∈ I, so for any j ̸= 0, S ′j,k can’t be 1 for all k ∈ I.
Therefore, ∑

i∈I

diSi,j = δj,0
∑
i∈I

di dim(Vi) = δj,0 x.

Proof of (2): Using domination and (1), we have

∑
k∈I

dkSi,kSj,k

dim(Vk)
=

∑
k∈I

dk
k

i j

=
∑
r

∑
k∈I

dk l(r)

k

gr

fr

i j

=
∑
r

δl(r),0
∑
k∈I

dk
k

gr

fr

i j

= x
∑
r

δl(r),0

gr

fr

i j

.

From Schur lemma (Lemma 6), it is easy to see that

Hom(1, Vi ⊗ Vj) = 0 = Hom(Vi ⊗ Vj,1)

unless j = i∗, in which case Hom(1, Vi ⊗ V ∗i ) is a free rank 1 R-module spanned by
←
∪Vi

,

and Hom(Vi ⊗ V ∗i ,1) is a free rank 1 R-module spanned by
→
∩Vi

. Therefore, without loss of
generality, we may assume that there is only one r for which l(r) = 0. It remains to show
that

g

f
i i

?
= 1.

Let cf , cg ∈ R be constants determined by f = cf
←
∪Vi

and g = cg
→
∩Vi

. Then, the LHS of the
above picture evaluates to

cfcg dim(Vi).
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On the other hand, we have, using Schur lemma again,

dim(Vi) =

i

=
∑
r

l(r)

gr

fr

i

i

=

g

f

i

i

= cfcg dim(Vi)
2.

Therefore, cfcg dim(Vi) = 1.
Proof of (3): From the definition of di’s,∑

i∈I

divivjSi,j = dim(Vj)

⇒
∑
i∈I

didjviv
−1
k

Si,jSj,k

dim(Vj)
= djv

−1
j v−1k Sj,k

(2)⇒
∑
i∈I

diviv
−1
k xδi∗,k =

∑
j∈I

djv
−1
j v−1k Sj,k

⇒ xdk =
∑
j∈I

djv
−1
j v−1k Sj,k.

Proof of (4): We have

dim(Vj) = τ ′
(
S3, j

)
= (xd0)

−1

〈
θ−1θ−1

j 〉
′

= (xd0)
−1
∑
i∈I

div
−1
i v−1j Si,j

(3)
= (xd0)

−1xdj =
dj
d0

.

Therefore,

dj = d0 dim(Vj).

□

14.1.1. SL2(Z)-action. Consider the square matrices

S = (Si,j)i,j∈I , T := (δi,jvi)i,j∈I , J := (δi∗,j)i,j∈I .

Both S and T commute with J . We have, from (2) and (4),

S2 = d−10 xJ = D2J.
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Moreover, by computing τ for a colored Hopf link in S3 in two different ways

kj

=
θθ θ

kj

,

we get

D−1Sj,k∗ = ∆D−3vjvk
∑
i∈I

viSjiSik,

or equivalently,

SJ = ∆D−2TSTST.

The modular group SL2(Z) is generated by

s =

(
0 −1
1 0

)
, t =

(
1 1
0 1

)
which satisfy relations

s4 = 1, (ts)3 = s2.

From our observations above, we obtain a projective representation

SL2(Z) → PGLI(R)

s 7→ D−1S,

t 7→ T−1.

Indeed,

(D−1S)4 = D−4S4 = D−4(D2J)2 = 1,

and

(D−1T−1S)3 = D−3(T−1ST−1)ST−1S = ∆D−5JST (SS)T−1S = ∆D−3S2 = ∆D−1(D−1S)2.

It is because of the factor ∆D−1 we get a projective representation.

14.1.2. Examples.

Example 16. The ribbon category Proj(R) that we saw in Example 4 is modular. The set
{Vi}i∈I consists of one element, R, and the matrix S is (1).

Example 17. The ribbon category V(G,R, c, φ) that we saw in Example 5, with the family
{Vg}g∈G consisting of all objects of this category, is modular if and only if G is a finite group
and the matrix (c(g, h)c(h, g))g,h∈G is invertible over R.

As a special case, consider the following. For a fixed positive odd integer k and a primitive
k-th root of unity ζ = ζk, set

• G = Z/kZ,
• R = Z[ζ] (or just C),
• c : G×G → R∗, (i, j) 7→ ζ ij,
• φ : G → R∗, i 7→ 1.
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The matrix S = (ζ2ij)i,j∈Z/kZ has determinant

det
(
ζ2ij
)
i,j∈Z/kZ =

∏
0≤i<j≤k−1

(ζ2j − ζ2i),

and this is non-zero since we are assuming that k is odd. This is the modular category behind
U(1) Chern-Simons theory. The corresponding WRT invariants are Gauss sums and have
particularly simple formulas.

Example 18. Let G be a finite group. We saw in Example 12 that the quantum double
D(G) := D(k[G]) of the group algebra k[G] is a ribbon Hopf algebra, and that the category
RepD(G)fin of finite dimensional representations of D(G) is a ribbon category.
A representation V of D(G) is the same as a representation of k[G] with G-grading

V =
⊕

g∈G Vg (where Vg = δgV ) satisfying xVg ⊂ Vxgx−1 . Note that each Vg is a representation

of k[Z(g)], and that for each v ∈ V , k[Z(g)]δgv is an irreducible representation π of k[Z(g)].
Moreover,

Vg,π := k[G]δgv =
⊕

xgx−1∈g

xπ

is an irreducible D(G)-module. Hence, for any v ∈ V , the submodule of V generated by v
can be decomposed into irreducible modules as

D(G)v =
⊕
g∈G

k[G]δgv.

Therefore, every finite dimensional representation of D(G) can be decomposed into irreducible
ones, i.e., RepD(G)fin is a semisimple category.

RepD(G)fin is in fact a modular category:

• Simple objects Vg,π are labeled by a conjugacy class g ∈ G and an isomorphism class

π ∈ Ẑ(g) of irreducible representations of the centralizer Z(g); Vg,π :=
⊕

xgx−1∈g xπ.
• Dual objects are given by V ∗g,π ≃ Vg−1,π∗ .
• The S and T matrices are given by

S(g,π),(g′,π′) =
|G|

|Z(g)||Z(g′)|
∑
h∈G

hg′h−1∈Z(g)

Trπ(hg
′−1h−1) Trπ′(h−1g−1h),

T(g,π),(g′,π′) = δ(g,π),(g′,π′)

Trπ(g)

Trπ(e)
.

• ∆ = |G| and D = ±|G|.
See [BK01, Theorem 3.2.1] for a proof.

Exercise 9. Compute the WRT invariant for lens spaces, in the examples above.

Example 19. Consider the quantum group Uq(g) at q = e
πi
mk , where k ∈ Z+ and m := ⟨α,α⟩

2
for a long root α (m = 1 if g is simply-laced). Let C(g, k) be the category of finite dimensional
representations of Uq(g) over C with weight decomposition:

V =
⊕
λ∈P

V λ, qH |V λ = q(H,λ)idV λ ,

E
(n)
i (V λ) ⊂ V λ+nαi , F

(n)
i (V λ) ⊂ V λ−nαi .
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It is known that C(g, k) is a ribbon category. It contains, as a full subcategory, the category
T of tilting modules, which is also a ribbon category.

Let Cint(g, k) (k ≥ h∨) be the category of tilting modules where we quotient out negligible
morphisms, i.e. morphisms f : T1 → T2 for which Trq(fg) = 0 for all g : T2 → T1. Then
Cint(g, k) is a (semisimple, abelian) modular category whose simple objects are the Weyl
modules

Vλ, with λ ∈ P+, (λ+ ρ, θ∨) < k.

See [BK01, Ch. 3.3] for details. This is the modular category behind Chern-Simons 3d
TQFT.

15. Lecture 15 (Tue Mar 26, 2024)

15.1. Skein modules, algebras, and categories. Let’s start from the basic definition of
skein modules.

Definition 45 ([Prz91, Tur88]). The sl2 (or Kauffman bracket) skein module Sksl2A (Y ) of a
3-manifold Y is the Z[A±1]-module freely spanned by isotopy classes of framed, unoriented
links in Y , modulo the following skein relations (all in blackboard framing):

= A + A−1 ,

= (−A2 − A−2) .

In particular, the well-definedness of Kauffman bracket implies that

Sksl2A (R3) ∼= Z[A±1]
[K] 7→ ⟨K⟩.

When Y is of the form Σ× R, the skein module is naturally an algebra, with the algebra
structure given by stacking along the R-direction. In this case, we call it the sl2 skein algebra
of Σ and denote it by SkAlgsl2A (Σ).
Even better, we can think of it in terms of an algebroid (i.e. a linear category):

Definition 46. The sl2 skein category SkCatsl2A (Σ) associated to an oriented surface Σ
consists of the following data:

(1) An object of SkCatsl2A (Σ) is a finite set of framed points on Σ.
(2) The morphism space between x and y is the skein module of Σ× I with boundary

condition x (resp. y) on Σ× {0} (resp. Σ× {1}). That is, a morphism between x and
y is represented by a framed tangle in Σ× I interpolating x and y.

(3) Composition of two morphisms are defined in an obvious way, by stacking.

Remark 17. The notion of skein modules and skein categories can be generalized to any
ribbon category, using the Reshetikhin-Turaev functor we studied in Section ??. That is,
given a k-linear ribbon category V, the skein module SkV(Y ) is the k-vector space freely
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spanned by V-colored ribbon graphs in Y , modulo skein relations, which are all the V-colored
ribbon graphs in D2 × I which evaluate to 0 under Reshetikhin-Turaev functor.
The skein category SkCatV(Σ) can be defined in a similar way.

15.2. Classical limit and character varieties. One of the most important properties of
skein modules is that they quantize the character variety; [Bul97, PS00].
For concreteness, let’s focus on the sl2 skein module. When A = ±1, it is clear from the

skein relations that the skein module is no longer sensitive to the crossings; that is, Sksl2A=±1(Y )
is a commutative algebra, with the algebra structure given by superposing two links.

Definition 47. Let R(Y ) be the SL2(C)-representation variety of π1(Y ); that is,

R(Y ) := {ρ : π1(Y ) → SL2(C)}.
For each ρ : π1(Y ) → SL2(C), let χρ := Tr ρ : π1(Y ) → C be the associated character. The
SL2(C)-character variety X(Y ) is defined as

X(Y ) := {χρ : π1(Y ) → C | ρ ∈ R(Y )}.

For any conjugacy class γ ∈ π1(Y ), let tγ ∈ C[X(Y )] be the function on X(Y ) defined by
tγ(χ) := χ(γ). Let T be the ring of functions on X(Y ) generated by tγ’s.

Lemma 11. For any x, y ∈ SL2(C),
Tr(xy) + Tr

(
xy−1

)
= Tr(x) Tr(y).

Proof. This follows easily from the identity y + y−1 = Tr(y)I. □

Using this lemma and finite-generation of π1(Y ), one can show that:

Proposition 28 ([CS83]). T is finitely generated.

Let tγ1 , · · · , tγm be generators of T . Then, t := (tγ1 , · · · , tγm) defines an injective map

t : X(Y ) → Cm.

Theorem 24 ([CS83]). t(X(Y )) ⊂ Cm is a closed algebraic subset. Therefore, the character
variety X(Y ) is an affine variety.

The following theorems give a precise relationship between the SL2(C)-character variety
and Sksl2A=−1(Y ).

Theorem 25 ([Bul97]). The map

Φ : Sksl2A=−1(Y ) → C[X(Y )]

[K] 7→ Φ(K) : χ 7→ −χ(K)

is a well-defined surjective algebra homomorphism.

Proof. We need to check that this map respects the two skein relations. For the first one,

Φ

(
+ +

)
(χ) = −Tr(xy)− Tr

(
xy−1

)
+ Tr(x) Tr(y) = 0,

and for the second one,
Φ( + 2) = −Tr(I) + 2 = 0.

□
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Theorem 26 ([Bul97]). The kernel of Φ is the nilradical (i.e. the ideal consisting of nilpotent
elements) of Sksl2A=−1(Y ).

A better way to formulate the relationship between the skein module and character variety
is to enhance the character variety into a (possibly non-reduced) scheme.

Definition 48. The character scheme X (Y ) = Hom(π1(Y ), SL2(C)) � SL2(C) is defined to
be the GIT quotient

X (Y ) = Spec(C[R(Y )]SL2(C)).

The character variety X(Y ) is then the algebraic set underlying X (Y ). That is,

C[X(Y )] = C[X (Y )]/
√
0.

Theorem 27 ([PS00]). There is a natural C-algebra isomorphism Sksl2A=−1(Y ) ∼= C[X (Y )].

16. Lecture 16 (Tue Apr 2, 2024)

16.1. Quantum Teichmüller spaces. [To be written]

16.2. Quantum trace map. [BW11] [To be written]

Theorem 28 ([BW11]). There is an algebra embedding

Trωλ : SkAlgsl2A=ω−2(Σ) → Zω
λ

from the Kauffman bracket skein algebra into the Checkhov-Fock square root algebra.

17. Lecture 17 (Thu Apr 4, 2024)

17.1. Stated skein modules. It is possible to extend the notion of skein modules to allow
the skeins to end on a boundary marking; [BW11, L1̂8, CL22a, CL22b, PP24].

17.1.1. Stated skein algebras of surfaces. We mostly follow [CL22a] in this subsection.
By a bordered, punctured surface, we mean an oriented surface possibly with boundary and

punctures, such that each connected component of the boundary is an interval.
Let Σ be a bordered, punctured surface. For each boundary interval, fix a base point;

let P be the set of those base points. Then, P × I ⊂ Σ × I consists of oriented intervals
(orientation is induced from that of I); see the figure below, in case Σ is a hexagon D6:

We call P × I the boundary marking.
Let R := Z[A± 1

2 , (−A2)±
1
2 ].

Definition 49. The stated sl2-skein algebra SkAlgsl2A (Σ, P ) is the free R-module spanned
by (2-framed) ribbon tangles in Σ× I with boundaries lying flat on the boundary marking
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P × I, with each boundary points equipped with a sign ∈ {±} called a state, modulo the
following skein relations:

= A + A−1 ,

= (−A2 − A−2) ,

µ

ν
= δµ,−ν (−A2)

µ
2 , µ, ν ∈ {±1} ,

=
∑

µ∈{±}

(−A2)
µ
2

µ

−µ
,

= (−A3)
1
2 .

The algebra structure is given by stacking along the I-direction.

Theorem 29 (splitting map; [L1̂8, Thm. 3.1]). Let Σ be a bordered, punctured surface, and
let c ⊂ Σ be an ideal arc. Let Σ′ = Σ \ c be the surface obtained by cutting Σ along c. Then,
there is an algebra embedding

σ : SkAlg(Σ) → SkAlg(Σ′)

given by

[L] 7→
∑
ϵ⃗

[Lϵ⃗],

where the sum is over {±}L∩c, i.e., all possible ways to assign states to L ∩ c.

Proof. Any isotopy of L in Σ× I is a composition of finite sequence of elementary isotopies:

(1) An isotopy in the class of tangles in general position with respect to c× I.
(2) Creation or annihilation of pairs of points in the intersection L ∩ (c× I).
(3) Moving a crossing across c× I (i.e. height exchange).
(4) Moving a half-twist across c× I.

One can check that under each of those elementary isotopies, the image doesn’t change.
Therefore, σ is well-defined.
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For injectivity, we can isotope L so that the number of intersection points with c× I is
minimal. Then, the “leading term” of σ(L) (with respect to the grading given by sum of
all states), which is [Lϵ⃗] with + on all the intersection points L ∩ c, uniquely determines L.
Then, for any non-zero x =

∑
j cj[Lj] with cj ̸= 0 and [Li] ̸= [Lj] for any i ̸= j, one can see

that the leading term is non-zero, hence the image σ(x) is also non-zero. □

Theorem 30 ([CL22a, Prop. 3.3]). The stated skein algebra of a bigon D2 is a Hopf algebra.

Proof. The coalgebra structure is given by splitting a bigon into two bigons:

∆ : SkAlg(D2) → SkAlg(D2)⊗ SkAlg(D2).

It is easy to check that, together with the usual algebra structure, this makes SkAlg(D2) a
bialgebra. Comment on the existence of counit and antipode □

Definition 50. The Hopf algebra Oq(SL2), which is the Hopf dual of Uq(sl2), is generated
by a, b, c, d with relations

ca = q ac, db = q bd, ba = q ab, dc = q cd,

bc = cb, ad− q−1bc = 1, da− q cb = 1,

with coproduct

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d, ∆(c) = c⊗ a+ d⊗ c, ∆(d) = c⊗ b+ d⊗ d,

and counit
ϵ(a) = ϵ(d) = 1, ϵ(b) = ϵ(c) = 0.

Its antipode is given by

S(a) = d, S(d) = a, S(b) = −q b, S(c) = −q−1c.

Theorem 31 ([CL22a, Thm 3.4]). There is an isomorphism of Hopf algebras

ϕ : SkAlgA(D2) → Oq=A2(SL2)

given on the generators by

α+,+ 7→ a

α+,− 7→ b

α−,+ 7→ c

α−,− 7→ d

Corollary 4. For any choice of a boundary interval of a bordered punctured surface Σ, the
stated skein algebra SkAlg(Σ) is a comodule over Oq=A2(SL2) (or, equivalently, a module over
Uq=A2(sl2)).

Theorem 32 ([CL22a, Thm 3.5]). The dual universal R-matrix ρ ∈ (Oq=A2(SL2)⊗Oq=A2(SL2))
∗

on Oq=A2(SL2) can be described by

ρ(x⊗ y) = ϵ

(
y

x

)

18. Lecture 18 (Tue Apr 9, 2024)

18.1. Stated skein modules (cont.)
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18.1.1. Stated skein algebras of surfaces (cont.)

Definition 51. Let C be a coalgebra. For a C-C-bicomodule M , the (0-th) Hochschild
cohomology HH0(M) is

HH0(M) := {m ∈ M | ∆l(m) = fl ◦∆r(m)} ⊂ M,

where fl : x⊗ y 7→ y ⊗ x is the flip.

Theorem 33 ([CL22a, Thm. 4.8]). In the setting of the splitting map (Theorem 29),
the splitting map σ is an isomorphism onto the Hochschild cohomology of SkAlg(Σ′) as a
bicomodule over Oq=A2(SL2):

σ : SkAlg(Σ)
∼→ HH0(SkAlg(Σ′)).

Remark 18. There is an analogous statement [CL22a, Thm. 4.10] where we view SkAlg(Σ′)
as a bimodule over Uq=A2(sl2): the composition of the splitting map with the quotient to the
0-th Hochschild homology (which is a quotient of the bimodule) is an isomorphism.

18.1.2. Reduced stated skein algebras. [Reduced stated skein algebras, relation to 2d quantum
trace map, following [CL22a] – To be written]

18.2. Stated skein module of 3-manifolds. [CL22b, PP24] [To be written]

18.3. 3d quantum trace map. [PP24] [To be written]

19. Lecture 19 (Thu Apr 11, 2024)

19.1. Non-semisimple quantum invariants.

19.1.1. Modified quantum dimension. [Following [GPMT09, GKPM11] – To be written]

19.1.2. Akutsu-Deguchi-Otsuki (ADO) invariants. [To be written]

20. Lecture 20 (Tue Apr 16, 2024)

20.1. Non-semisimple quantum invariants (cont.)

20.1.1. Relative G-modular categories. [Following [CGPM14] – to be written]

20.1.2. Costantino-Geer-Patureau (CGP) invariants. [To be written]

21. Lecture 21 (Thu Apr 18, 2024)

22. Lecture 22 (Tue Apr 23, 2024)
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