
RESEARCH STATEMENT

SUNGHYUK PARK

My research focuses on problems in geometry and topology, with particular emphasis on
quantum topology and symplectic topology. I am especially interested in bringing ideas inspired
by physics—such as quantum field theory and string theory—into a rigorous mathematical frame-
work, using them to uncover new structures and deepen our understanding of low-dimensional
topology.

Quantum topology is a vibrant field at the crossroads of topology, algebra, and representation
theory, that studies low-dimensional spaces—such as three- and four-dimensional manifolds and
knots—through the lens of rich algebraic structures like quantum groups, tensor categories,
and higher categories. This field began with the discovery of the Jones polynomial, which
revealed unexpected algebraic structures in knot theory and led to the development of quantum
invariants of 3-manifolds, most notably through Witten’s work on Chern-Simons theory and
its mathematical incarnation in terms of quantum groups by Reshetikhin and Turaev. These
ideas also inspired the formulation of topological quantum field theories (TQFTs), which encode
topological data in algebraic terms, and culminated in the development of Khovanov homology—
a categorification of the Jones polynomial that has led to striking advances in the study of
smooth 4-manifolds, one of the most subtle and challenging frontiers in mathematics. A natural
next step in this direction, and a major open problem in the field, is to extend the idea of
categorification from knot invariants to 3-manifold invariants, providing a 3-manifold analog of
Khovanov homology.
Symplectic topology is a central field in modern differential topology that studies spaces

equipped with a symplectic structure—a geometric structure originally studied in classical
mechanics to describe the evolution of physical systems. Though rooted in 19th-century
mathematics, symplectic topology has undergone a transformative development in the late 20th
century, most notably through Gromov’s introduction of pseudo-holomorphic curves. This paved
the way for powerful invariants such as Gromov–Witten invariants and Floer homology, which
have since become indispensable tools in low-dimensional topology. While originally developed
within symplectic topology, holomorphic curve techniques have recently begun to shed light on
questions in quantum topology as well, revealing surprising connections between the two fields.
My work addresses foundational questions in quantum topology, while also exploring new

connections with symplectic topology. One of the main focuses of my research has been the

development of new quantum invariants of 3-manifolds, known as the “Ẑ-invariants”, as a step
toward the categorification of quantum 3-manifold invariants. Another focus of my research has
been “skein theory”, the study of certain vector space-valued invariants of 3-manifolds, which
exhibit deep and unexpected connections to hyperbolic geometry, symplectic topology, and
Langlands duality. My work approaches skein theory both from the perspective of quantum
topology and through holomorphic curve techniques. The remainder of this statement explores
these aspects of my research in greater detail and outlines directions for future work.
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1. Quantum 3-manifold invariants and their categorification

A central open problem in quantum topology is to categorify quantum invariants of 3-
manifolds—that is, to lift numerical quantum 3-manifold invariants to richer homological or
categorical structures, much like how Khovanov homology [Kho00] lifts the Jones polynomial.
Such a theory could offer deeper structural insight into 3-manifold topology and lead to powerful
new invariants for smooth 4-manifolds, which remain among the most mysterious objects in
mathematics.

Question 1. Is there an analog of Khovanov homology for 3-manifolds?

However, even after 25 years since the discovery of Khovanov homology, the problem of extending
it to other 3-manifolds remains largely an open question, except in few cases, such as I-bundles
over surfaces [APS04] and connected sums of copies of S2 × S1 [Roz10, Wil21].

Nonetheless, insights from physics suggest that the answer to this question may still be “yes.”
In particular, recent developments in supersymmetric quantum field theory [Wit12, GPV17]
predict the existence of categorified 3-manifold invariants, whose decategorified shadows are

expected to be the so-called Ẑ-invariants—a family of q-series-valued invariants introduced in
[GPPV20]. These invariants thus offer a concrete, computable starting point for tackling the
categorification problem.

Motivated by these predictions, my work brings the Ẑ-invariants into the realm of quantum
topology by providing a mathematical definition for them in a broad class of 3-manifolds.

Previously, Gukov and Manolescu [GM21] defined the Ẑ-invariants for negative definite plumbed
3-manifolds, including torus knot complements, and conjectured their extension to all knot
complements. Building on this framework, I have proved their conjecture for a large class

of knot complements by constructing the Ẑ-invariants using state-sum techniques from the
infinite-dimensional representation theory of quantum groups.

Theorem 1 ([Par20, Par21, Par22]). To any “nice knot”—a class of knots that includes all

closures of homogeneous braids—one can associate a two-variable power series, the Ẑ-invariant
of the knot complement, which defines a knot invariant. This invariant captures significant
information: it encodes the Alexander polynomial as well as all colored Jones polynomials.

The key ingredient in this construction is the large-color R-matrix, which describes the braiding
of infinite-dimensional Verma modules of the quantum group. The natural next step toward
the categorification problem is to categorify the large-color R-matrix itself. Recent work by
Vaz, Naisse, and others on the categorification of Verma modules and their tensor products
[LNV21, DN21] provides a promising foundation for this approach and may lead to a categorified

version of the Ẑ-invariants.
The structure of the Ẑ-invariants exhibits striking parallels with Heegaard Floer homology:

in both theories, the invariants decompose according to spinc structures on the 3-manifold.
This analogy is particularly clear for plumbed knot complements, where a combinatorial model
for knot Floer homology—known as knot lattice homology—is available. In joint work with
Akhmechet and Johnson, we proved the following:

Theorem 2 ([AJPar]). There is an invariant of plumbed knot complements, called weighted

bigraded roots, that unifies the Ẑ-invariant and (the degree-zero part of) knot lattice homology.
This invariant admits an explicit surgery formula.

This parallel not only reveals structural connections between the two theories but also provides

valuable clues toward the categorification of the Ẑ-invariants.
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Yet another promising approach toward categorifying the Ẑ-invariants arises from their
conjectural connection to Stokes phenomena in complex Chern–Simons theory. In recent work
[GGMnW25], Garoufalidis and collaborators empirically observed that one can associate to a
knot a matrix of q-series—interpreted as Stokes coefficients—with a distinguished entry given by

the Ẑ-invariant. These matrices are expected to admit a natural categorification via the Fukaya–
Seidel category, or its combinatorial analog, the algebra of the infrared [GMW15, KKS16].
Related ideas have also appeared in the work of Gukov and Putrov [GP24], who proposed a way
to categorify Stokes coefficients in Chern–Simons theory. This perspective offers a promising

geometric framework for the categorification of the Ẑ-invariants.
These developments have also created opportunities for undergraduate research within my

program. In Spring 2022, I supervised a visiting undergraduate student on his senior thesis,
focused on extending the large-color R-matrix to quantum so8, building on my earlier work with
quantum sl2. More recently, in Summer 2025, I mentored two students through the Harvard
Summer REU on a project investigating the infinite Jones–Wenzl projector, which provides a
diagrammatic model for Verma modules. These projects introduced students to current ideas
in quantum topology and representation theory, giving them meaningful exposure to ongoing
research.

2. Skein theory and geometry

Skein theory provides a powerful framework for relating quantum invariants to geometric
structures on surfaces and 3-manifolds. A key example of this connection is the realization that
the SL2-skein algebra of a surface Σ—an algebra generated by framed links in Σ× I, modulo
local relations reflecting the representation theory of quantum SL2—provides a deformation
quantization of the SL2(C)-character variety. At the same time, the quantum Teichmüller
space—introduced by Chekhov–Fock [FC99] and Kashaev [Kas98]—quantizes the Teichmüller
space, which corresponds to a connected component of the PSL2(R)-character variety. The work
of Bonahon and Wong [BW11] clarified the relationship between these two quantizations by
constructing the quantum trace map, a homomorphism from the skein algebra to the quantum
Teichmüller space that quantizes the classical trace map between the corresponding character
varieties. This map has had important applications, including the construction of irreducible
representations of skein algebras at roots of unity [BW16, BW17], and has helped illuminate
the link between quantum topology and geometric structures.

Building on these ideas, my research extends the foundational ideas underlying the quantum
trace map into the 3-dimensional setting, developing new tools that connect skein modules,
quantum invariants, and geometric structures on 3-manifolds. In recent joint work with Panitch,
we constructed a 3-dimensional analog of the quantum trace map, relating the SL2-skein module
of a 3-manifold to its quantum gluing module—a quantization of Thurston’s gluing variety, which
parametrizes hyperbolic structures and forms a subspace of the PSL2(C)-character variety.

Theorem 3 ([PPar]). There is a linear map—the 3d quantum trace map—from the SL2-skein
module of a 3-manifold to its quantum gluing module, that quantizes the classical trace map
between the character varieties.

Our work resolved a conjecture posed in [AGLR22] and led to a precise mathematical formu-
lation of the length conjecture, which relates the colored Jones polynomials of a hyperbolic
knot—decorated by a link in its complement—to both the link’s hyperbolic length and a quantum
invariant known as the state integral.
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Beyond its conceptual significance, the 3d quantum trace map opens several promising
directions for future research. One important application is to the study of skein modules
specialized at roots of unity, where rich algebraic structures emerge. In the surface case, the 2d
quantum trace map has been used to construct and classify representations of skein algebras in
this setting by relating them to points in the character variety [BW16, BW17, FKBL19]. We
hope to develop a similar theory in three dimensions: given a point in the SL2(C)-character
variety of a 3-manifold, can one naturally associate a linear functional on its skein module at a
root of unity? The 3d quantum trace map provides a new tool for approaching this question.
Another natural direction is to extend the construction to other gauge groups. In analogy

with the SLN -quantum trace map for surfaces [LY25], we are exploring a generalization of our
3d construction to SLN -skein modules, with the goal of mapping to the SLN -version of quantized
gluing varieties studied by Dimofte, Gabella, and Goncharov [DGG16]. As in the SL2 case, our
approach involves decomposing the 3-manifold into simple pieces—such as ideal tetrahedra—and
studying how skein modules behave under cutting and gluing, using additional boundary data
to ensure compatibility across faces and edges.

An exciting direction of current work is the emerging relationship between the quantum trace
map and a seemingly unrelated construction from physics: the quantum UV–IR map of Neitzke
and Yan [NY20]. This map arises from the study of flat connections on Riemann surfaces
and encodes how nonabelian structures—such as GL2-local systems—can be abelianized on
a branched cover known as the spectral cover. At a formal level, it defines a homomorphism
from the GL2-skein algebra of a surface to the GL1-skein algebra of the cover. Though defined
very differently from the quantum trace map, it was conjectured in [NY20]—for surfaces—that
the two constructions are closely related. In ongoing joint work with Panitch, we prove this
conjecture and also formulate and establish a natural generalization in three dimensions:

Theorem 4 (Panitch–P., in progress). The quantum trace map and the quantum UV–IR map
are compatible in a way that is natural with respect to Pachner moves. In particular, for any
knot complement, the quantum trace map can be recovered from the quantum UV–IR map.

This compatibility suggests a promising path forward in higher rank. A conjectural extension of
the quantum UV–IR map assigns to each element in the GLN -skein algebra a GL1-skein in a
branched cover, but involves counting complicated flow graphs that are difficult to compute
directly. In contrast, the SLN -quantum trace map for 3-manifolds—once developed—may
provide an algebraic and computable model for these maps.

3. Quantum topology from symplectic topology

Recent developments have revealed surprising and deep connections between quantum topology
and symplectic topology. Physically, these connections are predicted by topological string theory:
Witten [Wit95] proposed that Chern–Simons theory—the physical model underlying many
quantum invariants—should emerge from string theory as a theory of holomorphic curves in a
Calabi–Yau 3-fold. This idea has recently taken rigorous mathematical form through the work
of Ekholm and Shende [ES25], who showed that open Gromov–Witten invariants, which count
holomorphic curves in a Calabi–Yau 3-fold X with boundary on a Lagrangian 3-manifold L ⊂ X,
can be organized as elements of the HOMFLYPT skein module Sk(L), a module generated by
framed oriented links in L, modulo local relations reflecting those of HOMFLYPT polynomials.
Remarkably, the boundary wall-crossing phenomena among holomorphic curves correspond
precisely to these skein relations.
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This perspective opens a two-way bridge between fields: skein-theoretic tools can shed light
on holomorphic curve counts, and insights from symplectic geometry can, in turn, inform
skein theory. In ongoing joint work with Ekholm, Longhi, and Shende, we are developing
a framework for understanding how these curve counts behave under branched coverings of
Lagrangians. Specifically, we consider a 3-manifold M and a Lagrangian submanifold L ⊂ T ∗M
that defines a branched cover of M . For each link K ⊂ M , we study the skein-valued count of
holomorphic curves with boundary on both L and the (shifted) conormal of K, producing an
element [K]L ∈ Sk(L). Surprisingly, the assignment K 7→ [K]L depends only on the skein class
of K in M . That is:

Theorem 5 (Ekholm–Longhi–P.–Shende, in progress). The map K 7→ [K]L factors through the
HOMFLYPT skein module of M , hence defining a linear map

Tr : Sk(M) → Sk(L), K 7→ [K]L.

This construction, which we call the skein trace map, exhibits striking and far-reaching properties.
In particular, by specializing to double branched covers and passing to the GL2-skein module of
M and the GL1-skein module of L, we recover the quantum UV–IR map of Neitzke and Yan
[NY20], which was discussed in the previous section. Unlike the original construction, where
isotopy invariance had to be verified by hand—a process that becomes increasingly intractable
for branched covers of higher degree—our approach yields the well-definedness of the map from
general principles of symplectic topology.
The skein trace map also reveals deep connections to the theory of Hecke algebras and

symmetric functions. Remarkably, even in one of the simplest cases—the trivial double cover of
the solid torus—this map encodes rich algebraic structure. In this setting, the (positive half of
the) HOMFLYPT skein module of the solid torus is isomorphic to the Hopf algebra of symmetric
functions [MS17], and the skein trace map agrees with its standard coproduct. More generally,
for a twisted N -fold cover of the solid torus, we conjecture that the skein trace map corresponds
to the transpose of the map induced on HOMFLYPT skein modules by the cabling of the solid
torus by a torus link with N strands [MM08]. This line of inquiry opens up new avenues of
research by uncovering previously unseen structure within HOMFLYPT skein modules and
Hecke algebras.

Another promising direction, motivated by skein-valued curve counts and the skein trace map,
is to develop a skein-theoretic analog of quantum cluster theory. In ordinary quantum cluster
varieties—such as the quantum Teichmüller space discussed in the previous section—coordinate
changes are governed by conjugation by the quantum dilogarithm, a function that satisfies both
a pentagon identity and a 3-term recursion. In the holomorphic curve framework, the analog of
this function is the skein dilogarithm—a skein-valued count of holomorphic disks—which satisfies
similar algebraic identities [Nak24, Hu24]. One consequence of our construction of the skein
trace map is that, under simple wall-crossings of spectral covers of surfaces, the associated skein
trace maps before and after the wall-crossing are related by conjugation by the skein dilogarithm.
This suggests the existence of a broader skein-valued cluster theory, in which mutation dynamics
are controlled by holomorphic curve counts and skein recursion. Initial steps toward such a
framework were taken by Hu, Schrader, and Zaslow [HSZ23]. Since holomorphic disks form
only the simplest class of curves, such a theory would naturally encode a much richer algebraic
structure, capturing the complexity of wall-crossing phenomena beyond the reach of classical
cluster theory.
Finally, a particularly intriguing application of skein-valued curve counts connects them to

the Ẑ-invariants discussed in the first section. Given a fibered knot K ⊂ S3, one can construct
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a Lagrangian submanifold in T ∗S3 diffeomorphic to the knot complement S3 \K, and count
holomorphic curves with boundary on this Lagrangian and the zero section; fiberedness ensures
that the Lagrangian can be shifted off the zero section to avoid intersection. Based on the
dualities in string theory, these curve counts—after suitable specialization—are conjectured to

reproduce the Ẑ-invariant of S3 \K [EGG+22]. Verifying this conjecture would give a geometric

interpretation of the Ẑ-invariants in terms of holomorphic curves, potentially opening a new
path toward their categorification.
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